refactor: openaiContentGenerator

This commit is contained in:
mingholy.lmh
2025-09-01 20:12:50 +08:00
parent f024bba2ef
commit 002f1e2f36
17 changed files with 2283 additions and 57 deletions

View File

@@ -208,19 +208,13 @@ export async function createContentGenerator(
}
// Import OpenAIContentGenerator dynamically to avoid circular dependencies
const { OpenAIContentGenerator } = await import(
'./openaiContentGenerator.js'
);
const { createContentGenerator } = await import('./refactor/index.js');
// Always use OpenAIContentGenerator, logging is controlled by enableOpenAILogging flag
return new OpenAIContentGenerator(config, gcConfig);
return createContentGenerator(config, gcConfig);
}
if (config.authType === AuthType.QWEN_OAUTH) {
if (config.apiKey !== 'QWEN_OAUTH_DYNAMIC_TOKEN') {
throw new Error('Invalid Qwen OAuth configuration');
}
// Import required classes dynamically
const { getQwenOAuthClient: getQwenOauthClient } = await import(
'../qwen/qwenOAuth2.js'

View File

@@ -0,0 +1,2 @@
export const DEFAULT_TIMEOUT = 120000;
export const DEFAULT_MAX_RETRIES = 3;

View File

@@ -0,0 +1,878 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import {
GenerateContentResponse,
GenerateContentParameters,
FinishReason,
Part,
Content,
Tool,
ToolListUnion,
CallableTool,
FunctionCall,
FunctionResponse,
} from '@google/genai';
import OpenAI from 'openai';
import { safeJsonParse } from '../../utils/safeJsonParse.js';
/**
* Converter class for transforming data between Gemini and OpenAI formats
*/
export class Converter {
private model: string;
private streamingToolCalls: Map<
number,
{
id?: string;
name?: string;
arguments: string;
}
> = new Map();
constructor(model: string) {
this.model = model;
}
/**
* Convert Gemini tool parameters to OpenAI JSON Schema format
*/
convertGeminiToolParametersToOpenAI(
parameters: Record<string, unknown>,
): Record<string, unknown> | undefined {
if (!parameters || typeof parameters !== 'object') {
return parameters;
}
const converted = JSON.parse(JSON.stringify(parameters));
const convertTypes = (obj: unknown): unknown => {
if (typeof obj !== 'object' || obj === null) {
return obj;
}
if (Array.isArray(obj)) {
return obj.map(convertTypes);
}
const result: Record<string, unknown> = {};
for (const [key, value] of Object.entries(obj)) {
if (key === 'type' && typeof value === 'string') {
// Convert Gemini types to OpenAI JSON Schema types
const lowerValue = value.toLowerCase();
if (lowerValue === 'integer') {
result[key] = 'integer';
} else if (lowerValue === 'number') {
result[key] = 'number';
} else {
result[key] = lowerValue;
}
} else if (
key === 'minimum' ||
key === 'maximum' ||
key === 'multipleOf'
) {
// Ensure numeric constraints are actual numbers, not strings
if (typeof value === 'string' && !isNaN(Number(value))) {
result[key] = Number(value);
} else {
result[key] = value;
}
} else if (
key === 'minLength' ||
key === 'maxLength' ||
key === 'minItems' ||
key === 'maxItems'
) {
// Ensure length constraints are integers, not strings
if (typeof value === 'string' && !isNaN(Number(value))) {
result[key] = parseInt(value, 10);
} else {
result[key] = value;
}
} else if (typeof value === 'object') {
result[key] = convertTypes(value);
} else {
result[key] = value;
}
}
return result;
};
return convertTypes(converted) as Record<string, unknown> | undefined;
}
/**
* Convert Gemini tools to OpenAI format for API compatibility.
* Handles both Gemini tools (using 'parameters' field) and MCP tools (using 'parametersJsonSchema' field).
*/
async convertGeminiToolsToOpenAI(
geminiTools: ToolListUnion,
): Promise<OpenAI.Chat.ChatCompletionTool[]> {
const openAITools: OpenAI.Chat.ChatCompletionTool[] = [];
for (const tool of geminiTools) {
let actualTool: Tool;
// Handle CallableTool vs Tool
if ('tool' in tool) {
// This is a CallableTool
actualTool = await (tool as CallableTool).tool();
} else {
// This is already a Tool
actualTool = tool as Tool;
}
if (actualTool.functionDeclarations) {
for (const func of actualTool.functionDeclarations) {
if (func.name && func.description) {
let parameters: Record<string, unknown> | undefined;
// Handle both Gemini tools (parameters) and MCP tools (parametersJsonSchema)
if (func.parametersJsonSchema) {
// MCP tool format - use parametersJsonSchema directly
if (func.parametersJsonSchema) {
// Create a shallow copy to avoid mutating the original object
const paramsCopy = {
...(func.parametersJsonSchema as Record<string, unknown>),
};
parameters = paramsCopy;
}
} else if (func.parameters) {
// Gemini tool format - convert parameters to OpenAI format
parameters = this.convertGeminiToolParametersToOpenAI(
func.parameters as Record<string, unknown>,
);
}
openAITools.push({
type: 'function',
function: {
name: func.name,
description: func.description,
parameters,
},
});
}
}
}
}
return openAITools;
}
/**
* Convert Gemini request to OpenAI message format
*/
convertGeminiRequestToOpenAI(
request: GenerateContentParameters,
): OpenAI.Chat.ChatCompletionMessageParam[] {
const messages: OpenAI.Chat.ChatCompletionMessageParam[] = [];
// Handle system instruction from config
if (request.config?.systemInstruction) {
const systemInstruction = request.config.systemInstruction;
let systemText = '';
if (Array.isArray(systemInstruction)) {
systemText = systemInstruction
.map((content) => {
if (typeof content === 'string') return content;
if ('parts' in content) {
const contentObj = content as Content;
return (
contentObj.parts
?.map((p: Part) =>
typeof p === 'string' ? p : 'text' in p ? p.text : '',
)
.join('\n') || ''
);
}
return '';
})
.join('\n');
} else if (typeof systemInstruction === 'string') {
systemText = systemInstruction;
} else if (
typeof systemInstruction === 'object' &&
'parts' in systemInstruction
) {
const systemContent = systemInstruction as Content;
systemText =
systemContent.parts
?.map((p: Part) =>
typeof p === 'string' ? p : 'text' in p ? p.text : '',
)
.join('\n') || '';
}
if (systemText) {
messages.push({
role: 'system' as const,
content: systemText,
});
}
}
// Handle contents
if (Array.isArray(request.contents)) {
for (const content of request.contents) {
if (typeof content === 'string') {
messages.push({ role: 'user' as const, content });
} else if ('role' in content && 'parts' in content) {
// Check if this content has function calls or responses
const functionCalls: FunctionCall[] = [];
const functionResponses: FunctionResponse[] = [];
const textParts: string[] = [];
for (const part of content.parts || []) {
if (typeof part === 'string') {
textParts.push(part);
} else if ('text' in part && part.text) {
textParts.push(part.text);
} else if ('functionCall' in part && part.functionCall) {
functionCalls.push(part.functionCall);
} else if ('functionResponse' in part && part.functionResponse) {
functionResponses.push(part.functionResponse);
}
}
// Handle function responses (tool results)
if (functionResponses.length > 0) {
for (const funcResponse of functionResponses) {
messages.push({
role: 'tool' as const,
tool_call_id: funcResponse.id || '',
content:
typeof funcResponse.response === 'string'
? funcResponse.response
: JSON.stringify(funcResponse.response),
});
}
}
// Handle model messages with function calls
else if (content.role === 'model' && functionCalls.length > 0) {
const toolCalls = functionCalls.map((fc, index) => ({
id: fc.id || `call_${index}`,
type: 'function' as const,
function: {
name: fc.name || '',
arguments: JSON.stringify(fc.args || {}),
},
}));
messages.push({
role: 'assistant' as const,
content: textParts.join('') || null,
tool_calls: toolCalls,
});
}
// Handle regular text messages
else {
const role =
content.role === 'model'
? ('assistant' as const)
: ('user' as const);
const text = textParts.join('');
if (text) {
messages.push({ role, content: text });
}
}
}
}
} else if (request.contents) {
if (typeof request.contents === 'string') {
messages.push({ role: 'user' as const, content: request.contents });
} else if ('role' in request.contents && 'parts' in request.contents) {
const content = request.contents;
const role =
content.role === 'model' ? ('assistant' as const) : ('user' as const);
const text =
content.parts
?.map((p: Part) =>
typeof p === 'string' ? p : 'text' in p ? p.text : '',
)
.join('\n') || '';
messages.push({ role, content: text });
}
}
// Clean up orphaned tool calls and merge consecutive assistant messages
const cleanedMessages = this.cleanOrphanedToolCalls(messages);
const mergedMessages =
this.mergeConsecutiveAssistantMessages(cleanedMessages);
return mergedMessages;
}
/**
* Convert OpenAI response to Gemini format
*/
convertOpenAIResponseToGemini(
openaiResponse: OpenAI.Chat.ChatCompletion,
): GenerateContentResponse {
const choice = openaiResponse.choices[0];
const response = new GenerateContentResponse();
const parts: Part[] = [];
// Handle text content
if (choice.message.content) {
parts.push({ text: choice.message.content });
}
// Handle tool calls
if (choice.message.tool_calls) {
for (const toolCall of choice.message.tool_calls) {
if (toolCall.function) {
let args: Record<string, unknown> = {};
if (toolCall.function.arguments) {
args = safeJsonParse(toolCall.function.arguments, {});
}
parts.push({
functionCall: {
id: toolCall.id,
name: toolCall.function.name,
args,
},
});
}
}
}
response.responseId = openaiResponse.id;
response.createTime = openaiResponse.created
? openaiResponse.created.toString()
: new Date().getTime().toString();
response.candidates = [
{
content: {
parts,
role: 'model' as const,
},
finishReason: this.mapOpenAIFinishReasonToGemini(
choice.finish_reason || 'stop',
),
index: 0,
safetyRatings: [],
},
];
response.modelVersion = this.model;
response.promptFeedback = { safetyRatings: [] };
// Add usage metadata if available
if (openaiResponse.usage) {
const usage = openaiResponse.usage;
const promptTokens = usage.prompt_tokens || 0;
const completionTokens = usage.completion_tokens || 0;
const totalTokens = usage.total_tokens || 0;
const cachedTokens = usage.prompt_tokens_details?.cached_tokens || 0;
// If we only have total tokens but no breakdown, estimate the split
// Typically input is ~70% and output is ~30% for most conversations
let finalPromptTokens = promptTokens;
let finalCompletionTokens = completionTokens;
if (totalTokens > 0 && promptTokens === 0 && completionTokens === 0) {
// Estimate: assume 70% input, 30% output
finalPromptTokens = Math.round(totalTokens * 0.7);
finalCompletionTokens = Math.round(totalTokens * 0.3);
}
response.usageMetadata = {
promptTokenCount: finalPromptTokens,
candidatesTokenCount: finalCompletionTokens,
totalTokenCount: totalTokens,
cachedContentTokenCount: cachedTokens,
};
}
return response;
}
/**
* Convert OpenAI stream chunk to Gemini format
*/
convertOpenAIChunkToGemini(
chunk: OpenAI.Chat.ChatCompletionChunk,
): GenerateContentResponse {
const choice = chunk.choices?.[0];
const response = new GenerateContentResponse();
if (choice) {
const parts: Part[] = [];
// Handle text content
if (choice.delta?.content) {
if (typeof choice.delta.content === 'string') {
parts.push({ text: choice.delta.content });
}
}
// Handle tool calls - only accumulate during streaming, emit when complete
if (choice.delta?.tool_calls) {
for (const toolCall of choice.delta.tool_calls) {
const index = toolCall.index ?? 0;
// Get or create the tool call accumulator for this index
let accumulatedCall = this.streamingToolCalls.get(index);
if (!accumulatedCall) {
accumulatedCall = { arguments: '' };
this.streamingToolCalls.set(index, accumulatedCall);
}
// Update accumulated data
if (toolCall.id) {
accumulatedCall.id = toolCall.id;
}
if (toolCall.function?.name) {
// If this is a new function name, reset the arguments
if (accumulatedCall.name !== toolCall.function.name) {
accumulatedCall.arguments = '';
}
accumulatedCall.name = toolCall.function.name;
}
if (toolCall.function?.arguments) {
// Check if we already have a complete JSON object
const currentArgs = accumulatedCall.arguments;
const newArgs = toolCall.function.arguments;
// If current arguments already form a complete JSON and new arguments start a new object,
// this indicates a new tool call with the same name
let shouldReset = false;
if (currentArgs && newArgs.trim().startsWith('{')) {
try {
JSON.parse(currentArgs);
// If we can parse current arguments as complete JSON and new args start with {,
// this is likely a new tool call
shouldReset = true;
} catch {
// Current arguments are not complete JSON, continue accumulating
}
}
if (shouldReset) {
accumulatedCall.arguments = newArgs;
} else {
accumulatedCall.arguments += newArgs;
}
}
}
}
// Only emit function calls when streaming is complete (finish_reason is present)
if (choice.finish_reason) {
for (const [, accumulatedCall] of this.streamingToolCalls) {
if (accumulatedCall.name) {
let args: Record<string, unknown> = {};
if (accumulatedCall.arguments) {
args = safeJsonParse(accumulatedCall.arguments, {});
}
parts.push({
functionCall: {
id:
accumulatedCall.id ||
`call_${Date.now()}_${Math.random().toString(36).substring(2, 9)}`,
name: accumulatedCall.name,
args,
},
});
}
}
// Clear all accumulated tool calls
this.streamingToolCalls.clear();
}
response.candidates = [
{
content: {
parts,
role: 'model' as const,
},
finishReason: choice.finish_reason
? this.mapOpenAIFinishReasonToGemini(choice.finish_reason)
: FinishReason.FINISH_REASON_UNSPECIFIED,
index: 0,
safetyRatings: [],
},
];
} else {
response.candidates = [];
}
response.responseId = chunk.id;
response.createTime = chunk.created
? chunk.created.toString()
: new Date().getTime().toString();
response.modelVersion = this.model;
response.promptFeedback = { safetyRatings: [] };
// Add usage metadata if available in the chunk
if (chunk.usage) {
const usage = chunk.usage;
const promptTokens = usage.prompt_tokens || 0;
const completionTokens = usage.completion_tokens || 0;
const totalTokens = usage.total_tokens || 0;
const cachedTokens = usage.prompt_tokens_details?.cached_tokens || 0;
// If we only have total tokens but no breakdown, estimate the split
// Typically input is ~70% and output is ~30% for most conversations
let finalPromptTokens = promptTokens;
let finalCompletionTokens = completionTokens;
if (totalTokens > 0 && promptTokens === 0 && completionTokens === 0) {
// Estimate: assume 70% input, 30% output
finalPromptTokens = Math.round(totalTokens * 0.7);
finalCompletionTokens = Math.round(totalTokens * 0.3);
}
response.usageMetadata = {
promptTokenCount: finalPromptTokens,
candidatesTokenCount: finalCompletionTokens,
totalTokenCount: totalTokens,
cachedContentTokenCount: cachedTokens,
};
}
return response;
}
/**
* Convert Gemini response format to OpenAI chat completion format for logging
*/
convertGeminiResponseToOpenAI(
response: GenerateContentResponse,
): OpenAI.Chat.ChatCompletion {
const candidate = response.candidates?.[0];
const content = candidate?.content;
let messageContent: string | null = null;
const toolCalls: OpenAI.Chat.ChatCompletionMessageToolCall[] = [];
if (content?.parts) {
const textParts: string[] = [];
for (const part of content.parts) {
if ('text' in part && part.text) {
textParts.push(part.text);
} else if ('functionCall' in part && part.functionCall) {
toolCalls.push({
id: part.functionCall.id || `call_${toolCalls.length}`,
type: 'function' as const,
function: {
name: part.functionCall.name || '',
arguments: JSON.stringify(part.functionCall.args || {}),
},
});
}
}
messageContent = textParts.join('').trimEnd();
}
const choice: OpenAI.Chat.ChatCompletion.Choice = {
index: 0,
message: {
role: 'assistant',
content: messageContent,
refusal: null,
},
finish_reason: this.mapGeminiFinishReasonToOpenAI(
candidate?.finishReason,
) as OpenAI.Chat.ChatCompletion.Choice['finish_reason'],
logprobs: null,
};
if (toolCalls.length > 0) {
choice.message.tool_calls = toolCalls;
}
const openaiResponse: OpenAI.Chat.ChatCompletion = {
id: response.responseId || `chatcmpl-${Date.now()}`,
object: 'chat.completion',
created: response.createTime
? Number(response.createTime)
: Math.floor(Date.now() / 1000),
model: this.model,
choices: [choice],
};
// Add usage metadata if available
if (response.usageMetadata) {
openaiResponse.usage = {
prompt_tokens: response.usageMetadata.promptTokenCount || 0,
completion_tokens: response.usageMetadata.candidatesTokenCount || 0,
total_tokens: response.usageMetadata.totalTokenCount || 0,
};
if (response.usageMetadata.cachedContentTokenCount) {
openaiResponse.usage.prompt_tokens_details = {
cached_tokens: response.usageMetadata.cachedContentTokenCount,
};
}
}
return openaiResponse;
}
/**
* Map OpenAI finish reasons to Gemini finish reasons
*/
private mapOpenAIFinishReasonToGemini(
openaiReason: string | null,
): FinishReason {
if (!openaiReason) return FinishReason.FINISH_REASON_UNSPECIFIED;
const mapping: Record<string, FinishReason> = {
stop: FinishReason.STOP,
length: FinishReason.MAX_TOKENS,
content_filter: FinishReason.SAFETY,
function_call: FinishReason.STOP,
tool_calls: FinishReason.STOP,
};
return mapping[openaiReason] || FinishReason.FINISH_REASON_UNSPECIFIED;
}
/**
* Map Gemini finish reasons to OpenAI finish reasons
*/
private mapGeminiFinishReasonToOpenAI(geminiReason?: unknown): string {
if (!geminiReason) return 'stop';
switch (geminiReason) {
case 'STOP':
case 1: // FinishReason.STOP
return 'stop';
case 'MAX_TOKENS':
case 2: // FinishReason.MAX_TOKENS
return 'length';
case 'SAFETY':
case 3: // FinishReason.SAFETY
return 'content_filter';
case 'RECITATION':
case 4: // FinishReason.RECITATION
return 'content_filter';
case 'OTHER':
case 5: // FinishReason.OTHER
return 'stop';
default:
return 'stop';
}
}
/**
* Clean up orphaned tool calls from message history to prevent OpenAI API errors
*/
private cleanOrphanedToolCalls(
messages: OpenAI.Chat.ChatCompletionMessageParam[],
): OpenAI.Chat.ChatCompletionMessageParam[] {
const cleaned: OpenAI.Chat.ChatCompletionMessageParam[] = [];
const toolCallIds = new Set<string>();
const toolResponseIds = new Set<string>();
// First pass: collect all tool call IDs and tool response IDs
for (const message of messages) {
if (
message.role === 'assistant' &&
'tool_calls' in message &&
message.tool_calls
) {
for (const toolCall of message.tool_calls) {
if (toolCall.id) {
toolCallIds.add(toolCall.id);
}
}
} else if (
message.role === 'tool' &&
'tool_call_id' in message &&
message.tool_call_id
) {
toolResponseIds.add(message.tool_call_id);
}
}
// Second pass: filter out orphaned messages
for (const message of messages) {
if (
message.role === 'assistant' &&
'tool_calls' in message &&
message.tool_calls
) {
// Filter out tool calls that don't have corresponding responses
const validToolCalls = message.tool_calls.filter(
(toolCall) => toolCall.id && toolResponseIds.has(toolCall.id),
);
if (validToolCalls.length > 0) {
// Keep the message but only with valid tool calls
const cleanedMessage = { ...message };
(
cleanedMessage as OpenAI.Chat.ChatCompletionMessageParam & {
tool_calls?: OpenAI.Chat.ChatCompletionMessageToolCall[];
}
).tool_calls = validToolCalls;
cleaned.push(cleanedMessage);
} else if (
typeof message.content === 'string' &&
message.content.trim()
) {
// Keep the message if it has text content, but remove tool calls
const cleanedMessage = { ...message };
delete (
cleanedMessage as OpenAI.Chat.ChatCompletionMessageParam & {
tool_calls?: OpenAI.Chat.ChatCompletionMessageToolCall[];
}
).tool_calls;
cleaned.push(cleanedMessage);
}
// If no valid tool calls and no content, skip the message entirely
} else if (
message.role === 'tool' &&
'tool_call_id' in message &&
message.tool_call_id
) {
// Only keep tool responses that have corresponding tool calls
if (toolCallIds.has(message.tool_call_id)) {
cleaned.push(message);
}
} else {
// Keep all other messages as-is
cleaned.push(message);
}
}
// Final validation: ensure every assistant message with tool_calls has corresponding tool responses
const finalCleaned: OpenAI.Chat.ChatCompletionMessageParam[] = [];
const finalToolCallIds = new Set<string>();
// Collect all remaining tool call IDs
for (const message of cleaned) {
if (
message.role === 'assistant' &&
'tool_calls' in message &&
message.tool_calls
) {
for (const toolCall of message.tool_calls) {
if (toolCall.id) {
finalToolCallIds.add(toolCall.id);
}
}
}
}
// Verify all tool calls have responses
const finalToolResponseIds = new Set<string>();
for (const message of cleaned) {
if (
message.role === 'tool' &&
'tool_call_id' in message &&
message.tool_call_id
) {
finalToolResponseIds.add(message.tool_call_id);
}
}
// Remove any remaining orphaned tool calls
for (const message of cleaned) {
if (
message.role === 'assistant' &&
'tool_calls' in message &&
message.tool_calls
) {
const finalValidToolCalls = message.tool_calls.filter(
(toolCall) => toolCall.id && finalToolResponseIds.has(toolCall.id),
);
if (finalValidToolCalls.length > 0) {
const cleanedMessage = { ...message };
(
cleanedMessage as OpenAI.Chat.ChatCompletionMessageParam & {
tool_calls?: OpenAI.Chat.ChatCompletionMessageToolCall[];
}
).tool_calls = finalValidToolCalls;
finalCleaned.push(cleanedMessage);
} else if (
typeof message.content === 'string' &&
message.content.trim()
) {
const cleanedMessage = { ...message };
delete (
cleanedMessage as OpenAI.Chat.ChatCompletionMessageParam & {
tool_calls?: OpenAI.Chat.ChatCompletionMessageToolCall[];
}
).tool_calls;
finalCleaned.push(cleanedMessage);
}
} else {
finalCleaned.push(message);
}
}
return finalCleaned;
}
/**
* Merge consecutive assistant messages to combine split text and tool calls
*/
private mergeConsecutiveAssistantMessages(
messages: OpenAI.Chat.ChatCompletionMessageParam[],
): OpenAI.Chat.ChatCompletionMessageParam[] {
const merged: OpenAI.Chat.ChatCompletionMessageParam[] = [];
for (const message of messages) {
if (message.role === 'assistant' && merged.length > 0) {
const lastMessage = merged[merged.length - 1];
// If the last message is also an assistant message, merge them
if (lastMessage.role === 'assistant') {
// Combine content
const combinedContent = [
typeof lastMessage.content === 'string' ? lastMessage.content : '',
typeof message.content === 'string' ? message.content : '',
]
.filter(Boolean)
.join('');
// Combine tool calls
const lastToolCalls =
'tool_calls' in lastMessage ? lastMessage.tool_calls || [] : [];
const currentToolCalls =
'tool_calls' in message ? message.tool_calls || [] : [];
const combinedToolCalls = [...lastToolCalls, ...currentToolCalls];
// Update the last message with combined data
(
lastMessage as OpenAI.Chat.ChatCompletionMessageParam & {
content: string | null;
tool_calls?: OpenAI.Chat.ChatCompletionMessageToolCall[];
}
).content = combinedContent || null;
if (combinedToolCalls.length > 0) {
(
lastMessage as OpenAI.Chat.ChatCompletionMessageParam & {
content: string | null;
tool_calls?: OpenAI.Chat.ChatCompletionMessageToolCall[];
}
).tool_calls = combinedToolCalls;
}
continue; // Skip adding the current message since it's been merged
}
}
// Add the message as-is if no merging is needed
merged.push(message);
}
return merged;
}
}

View File

@@ -0,0 +1,129 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { GenerateContentParameters } from '@google/genai';
import { RequestContext } from './telemetryService.js';
export interface ErrorHandler {
handle(
error: unknown,
context: RequestContext,
request: GenerateContentParameters,
): never;
shouldSuppressErrorLogging(
error: unknown,
request: GenerateContentParameters,
): boolean;
}
export class EnhancedErrorHandler implements ErrorHandler {
constructor(
private shouldSuppressLogging: (
error: unknown,
request: GenerateContentParameters,
) => boolean = () => false,
) {}
handle(
error: unknown,
context: RequestContext,
request: GenerateContentParameters,
): never {
const isTimeoutError = this.isTimeoutError(error);
const errorMessage = this.buildErrorMessage(error, context, isTimeoutError);
// Allow subclasses to suppress error logging for specific scenarios
if (!this.shouldSuppressErrorLogging(error, request)) {
const logPrefix = context.isStreaming
? 'OpenAI API Streaming Error:'
: 'OpenAI API Error:';
console.error(logPrefix, errorMessage);
}
// Provide helpful timeout-specific error message
if (isTimeoutError) {
throw new Error(
`${errorMessage}\n\n${this.getTimeoutTroubleshootingTips(context)}`,
);
}
throw error;
}
shouldSuppressErrorLogging(
error: unknown,
request: GenerateContentParameters,
): boolean {
return this.shouldSuppressLogging(error, request);
}
private isTimeoutError(error: unknown): boolean {
if (!error) return false;
const errorMessage =
error instanceof Error
? error.message.toLowerCase()
: String(error).toLowerCase();
// eslint-disable-next-line @typescript-eslint/no-explicit-any
const errorCode = (error as any)?.code;
// eslint-disable-next-line @typescript-eslint/no-explicit-any
const errorType = (error as any)?.type;
// Check for common timeout indicators
return (
errorMessage.includes('timeout') ||
errorMessage.includes('timed out') ||
errorMessage.includes('connection timeout') ||
errorMessage.includes('request timeout') ||
errorMessage.includes('read timeout') ||
errorMessage.includes('etimedout') ||
errorMessage.includes('esockettimedout') ||
errorCode === 'ETIMEDOUT' ||
errorCode === 'ESOCKETTIMEDOUT' ||
errorType === 'timeout' ||
errorMessage.includes('request timed out') ||
errorMessage.includes('deadline exceeded')
);
}
private buildErrorMessage(
error: unknown,
context: RequestContext,
isTimeoutError: boolean,
): string {
const durationSeconds = Math.round(context.duration / 1000);
if (isTimeoutError) {
const prefix = context.isStreaming
? 'Streaming request timeout'
: 'Request timeout';
return `${prefix} after ${durationSeconds}s. Try reducing input length or increasing timeout in config.`;
}
return error instanceof Error ? error.message : String(error);
}
private getTimeoutTroubleshootingTips(context: RequestContext): string {
const baseTitle = context.isStreaming
? 'Streaming timeout troubleshooting:'
: 'Troubleshooting tips:';
const baseTips = [
'- Reduce input length or complexity',
'- Increase timeout in config: contentGenerator.timeout',
'- Check network connectivity',
];
const streamingSpecificTips = context.isStreaming
? [
'- Check network stability for streaming connections',
'- Consider using non-streaming mode for very long inputs',
]
: ['- Consider using streaming mode for long responses'];
return `${baseTitle}\n${[...baseTips, ...streamingSpecificTips].join('\n')}`;
}
}

View File

@@ -0,0 +1,88 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import {
ContentGenerator,
ContentGeneratorConfig,
} from '../contentGenerator.js';
import { Config } from '../../config/config.js';
import { OpenAIContentGenerator } from './openaiContentGenerator.js';
import {
DashScopeOpenAICompatibleProvider,
OpenRouterOpenAICompatibleProvider,
type OpenAICompatibleProvider,
DefaultOpenAICompatibleProvider,
} from './provider/index.js';
// Main classes
export { OpenAIContentGenerator } from './openaiContentGenerator.js';
export { ContentGenerationPipeline, type PipelineConfig } from './pipeline.js';
// Providers
export {
type OpenAICompatibleProvider,
DashScopeOpenAICompatibleProvider,
OpenRouterOpenAICompatibleProvider,
} from './provider/index.js';
// Utilities
export { Converter } from './converter.js';
export { StreamingManager } from './streamingManager.js';
// Factory utility functions
/**
* Create an OpenAI-compatible content generator with the appropriate provider
*/
export function createContentGenerator(
contentGeneratorConfig: ContentGeneratorConfig,
cliConfig: Config,
): ContentGenerator {
const provider = determineProvider(contentGeneratorConfig, cliConfig);
return new OpenAIContentGenerator(
contentGeneratorConfig,
cliConfig,
provider,
);
}
/**
* Determine the appropriate provider based on configuration
*/
export function determineProvider(
contentGeneratorConfig: ContentGeneratorConfig,
cliConfig: Config,
): OpenAICompatibleProvider {
const config =
contentGeneratorConfig || cliConfig.getContentGeneratorConfig();
// Check for DashScope provider
if (DashScopeOpenAICompatibleProvider.isDashScopeProvider(config)) {
return new DashScopeOpenAICompatibleProvider(
contentGeneratorConfig,
cliConfig,
);
}
// Check for OpenRouter provider
if (OpenRouterOpenAICompatibleProvider.isOpenRouterProvider(config)) {
return new OpenRouterOpenAICompatibleProvider(
contentGeneratorConfig,
cliConfig,
);
}
// Default provider for standard OpenAI-compatible APIs
return new DefaultOpenAICompatibleProvider(contentGeneratorConfig, cliConfig);
}
// Services
export {
type TelemetryService,
type RequestContext,
DefaultTelemetryService,
} from './telemetryService.js';
export { type ErrorHandler, EnhancedErrorHandler } from './errorHandler.js';

View File

@@ -0,0 +1,81 @@
import { ContentGenerator } from '../contentGenerator.js';
import { Config } from '../../config/config.js';
import { type OpenAICompatibleProvider } from './provider/index.js';
import {
CountTokensParameters,
CountTokensResponse,
EmbedContentParameters,
EmbedContentResponse,
GenerateContentParameters,
GenerateContentResponse,
} from '@google/genai';
import { ContentGenerationPipeline, PipelineConfig } from './pipeline.js';
import { DefaultTelemetryService } from './telemetryService.js';
import { EnhancedErrorHandler } from './errorHandler.js';
import { ContentGeneratorConfig } from '../contentGenerator.js';
export class OpenAIContentGenerator implements ContentGenerator {
protected pipeline: ContentGenerationPipeline;
constructor(
contentGeneratorConfig: ContentGeneratorConfig,
cliConfig: Config,
provider: OpenAICompatibleProvider,
) {
// Create pipeline configuration
const pipelineConfig: PipelineConfig = {
cliConfig,
provider,
contentGeneratorConfig,
telemetryService: new DefaultTelemetryService(
cliConfig,
contentGeneratorConfig.enableOpenAILogging,
),
errorHandler: new EnhancedErrorHandler(
(error: unknown, request: GenerateContentParameters) =>
this.shouldSuppressErrorLogging(error, request),
),
};
this.pipeline = new ContentGenerationPipeline(pipelineConfig);
}
/**
* Hook for subclasses to customize error handling behavior
* @param error The error that occurred
* @param request The original request
* @returns true if error logging should be suppressed, false otherwise
*/
protected shouldSuppressErrorLogging(
_error: unknown,
_request: GenerateContentParameters,
): boolean {
return false; // Default behavior: never suppress error logging
}
async generateContent(
request: GenerateContentParameters,
userPromptId: string,
): Promise<GenerateContentResponse> {
return this.pipeline.execute(request, userPromptId);
}
async generateContentStream(
request: GenerateContentParameters,
userPromptId: string,
): Promise<AsyncGenerator<GenerateContentResponse>> {
return this.pipeline.executeStream(request, userPromptId);
}
async countTokens(
request: CountTokensParameters,
): Promise<CountTokensResponse> {
return this.pipeline.countTokens(request);
}
async embedContent(
request: EmbedContentParameters,
): Promise<EmbedContentResponse> {
return this.pipeline.embedContent(request);
}
}

View File

@@ -0,0 +1,380 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import OpenAI from 'openai';
import {
GenerateContentParameters,
GenerateContentResponse,
CountTokensParameters,
CountTokensResponse,
EmbedContentParameters,
EmbedContentResponse,
} from '@google/genai';
import { Config } from '../../config/config.js';
import { ContentGeneratorConfig } from '../contentGenerator.js';
import { type OpenAICompatibleProvider } from './provider/index.js';
import { Converter } from './converter.js';
import { TelemetryService, RequestContext } from './telemetryService.js';
import { ErrorHandler } from './errorHandler.js';
import { StreamingManager } from './streamingManager.js';
export interface PipelineConfig {
cliConfig: Config;
provider: OpenAICompatibleProvider;
contentGeneratorConfig: ContentGeneratorConfig;
telemetryService: TelemetryService;
errorHandler: ErrorHandler;
}
export class ContentGenerationPipeline {
client: OpenAI;
private converter: Converter;
private streamingManager: StreamingManager;
private contentGeneratorConfig: ContentGeneratorConfig;
constructor(private config: PipelineConfig) {
this.contentGeneratorConfig = config.contentGeneratorConfig;
this.client = this.config.provider.buildClient();
this.converter = new Converter(this.contentGeneratorConfig.model);
this.streamingManager = new StreamingManager(this.converter);
}
async execute(
request: GenerateContentParameters,
userPromptId: string,
): Promise<GenerateContentResponse> {
return this.executeWithErrorHandling(
request,
userPromptId,
false,
async (openaiRequest, context) => {
const openaiResponse = (await this.client.chat.completions.create(
openaiRequest,
)) as OpenAI.Chat.ChatCompletion;
const geminiResponse =
this.converter.convertOpenAIResponseToGemini(openaiResponse);
// Log success
await this.config.telemetryService.logSuccess(
context,
geminiResponse,
openaiRequest,
openaiResponse,
);
return geminiResponse;
},
);
}
async executeStream(
request: GenerateContentParameters,
userPromptId: string,
): Promise<AsyncGenerator<GenerateContentResponse>> {
return this.executeWithErrorHandling(
request,
userPromptId,
true,
async (openaiRequest, context) => {
const stream = (await this.client.chat.completions.create(
openaiRequest,
)) as AsyncIterable<OpenAI.Chat.ChatCompletionChunk>;
const originalStream = this.streamingManager.processStream(stream);
// Create a logging stream decorator that handles collection and logging
return this.createLoggingStream(
originalStream,
context,
openaiRequest,
request,
);
},
);
}
async countTokens(
request: CountTokensParameters,
): Promise<CountTokensResponse> {
// Use tiktoken for accurate token counting
const content = JSON.stringify(request.contents);
let totalTokens = 0;
try {
const { get_encoding } = await import('tiktoken');
const encoding = get_encoding('cl100k_base'); // GPT-4 encoding, but estimate for qwen
totalTokens = encoding.encode(content).length;
encoding.free();
} catch (error) {
console.warn(
'Failed to load tiktoken, falling back to character approximation:',
error,
);
// Fallback: rough approximation using character count
totalTokens = Math.ceil(content.length / 4); // Rough estimate: 1 token ≈ 4 characters
}
return {
totalTokens,
};
}
async embedContent(
request: EmbedContentParameters,
): Promise<EmbedContentResponse> {
// Extract text from contents
let text = '';
if (Array.isArray(request.contents)) {
text = request.contents
.map((content) => {
if (typeof content === 'string') return content;
if ('parts' in content && content.parts) {
return content.parts
.map((part) =>
typeof part === 'string'
? part
: 'text' in part
? (part as { text?: string }).text || ''
: '',
)
.join(' ');
}
return '';
})
.join(' ');
} else if (request.contents) {
if (typeof request.contents === 'string') {
text = request.contents;
} else if ('parts' in request.contents && request.contents.parts) {
text = request.contents.parts
.map((part) =>
typeof part === 'string' ? part : 'text' in part ? part.text : '',
)
.join(' ');
}
}
try {
const embedding = await this.client.embeddings.create({
model: 'text-embedding-ada-002', // Default embedding model
input: text,
});
return {
embeddings: [
{
values: embedding.data[0].embedding,
},
],
};
} catch (error) {
console.error('OpenAI API Embedding Error:', error);
throw new Error(
`OpenAI API error: ${error instanceof Error ? error.message : String(error)}`,
);
}
}
private async buildRequest(
request: GenerateContentParameters,
userPromptId: string,
streaming: boolean = false,
): Promise<OpenAI.Chat.ChatCompletionCreateParams> {
const messages = this.converter.convertGeminiRequestToOpenAI(request);
// Apply provider-specific enhancements
const baseRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: this.contentGeneratorConfig.model,
messages,
...this.buildSamplingParameters(request),
};
// Let provider enhance the request (e.g., add metadata, cache control)
const enhancedRequest = this.config.provider.buildRequest(
baseRequest,
userPromptId,
);
// Add tools if present
if (request.config?.tools) {
enhancedRequest.tools = await this.converter.convertGeminiToolsToOpenAI(
request.config.tools,
);
}
// Add streaming options if needed
if (streaming) {
enhancedRequest.stream = true;
enhancedRequest.stream_options = { include_usage: true };
}
return enhancedRequest;
}
private buildSamplingParameters(
request: GenerateContentParameters,
): Record<string, unknown> {
const configSamplingParams = this.contentGeneratorConfig.samplingParams;
// Helper function to get parameter value with priority: config > request > default
const getParameterValue = <T>(
configKey: keyof NonNullable<typeof configSamplingParams>,
requestKey: keyof NonNullable<typeof request.config>,
defaultValue?: T,
): T | undefined => {
const configValue = configSamplingParams?.[configKey] as T | undefined;
const requestValue = request.config?.[requestKey] as T | undefined;
if (configValue !== undefined) return configValue;
if (requestValue !== undefined) return requestValue;
return defaultValue;
};
// Helper function to conditionally add parameter if it has a value
const addParameterIfDefined = <T>(
key: string,
configKey: keyof NonNullable<typeof configSamplingParams>,
requestKey?: keyof NonNullable<typeof request.config>,
defaultValue?: T,
): Record<string, T> | Record<string, never> => {
const value = requestKey
? getParameterValue(configKey, requestKey, defaultValue)
: ((configSamplingParams?.[configKey] as T | undefined) ??
defaultValue);
return value !== undefined ? { [key]: value } : {};
};
const params = {
// Parameters with request fallback and defaults
temperature: getParameterValue('temperature', 'temperature', 0.0),
top_p: getParameterValue('top_p', 'topP', 1.0),
// Max tokens (special case: different property names)
...addParameterIfDefined('max_tokens', 'max_tokens', 'maxOutputTokens'),
// Config-only parameters (no request fallback)
...addParameterIfDefined('top_k', 'top_k'),
...addParameterIfDefined('repetition_penalty', 'repetition_penalty'),
...addParameterIfDefined('presence_penalty', 'presence_penalty'),
...addParameterIfDefined('frequency_penalty', 'frequency_penalty'),
};
return params;
}
/**
* Creates a stream decorator that collects responses and handles logging
*/
private async *createLoggingStream(
originalStream: AsyncGenerator<GenerateContentResponse>,
context: RequestContext,
openaiRequest: OpenAI.Chat.ChatCompletionCreateParams,
request: GenerateContentParameters,
): AsyncGenerator<GenerateContentResponse> {
const responses: GenerateContentResponse[] = [];
try {
// Yield all responses while collecting them
for await (const response of originalStream) {
responses.push(response);
yield response;
}
// Stream completed successfully - perform logging
context.duration = Date.now() - context.startTime;
const combinedResponse =
this.streamingManager.combineStreamResponsesForLogging(
responses,
this.contentGeneratorConfig.model,
);
const openaiResponse =
this.converter.convertGeminiResponseToOpenAI(combinedResponse);
await this.config.telemetryService.logStreamingSuccess(
context,
responses,
openaiRequest,
openaiResponse,
);
} catch (error) {
// Stream failed - handle error and logging
context.duration = Date.now() - context.startTime;
await this.config.telemetryService.logError(
context,
error,
openaiRequest,
);
this.config.errorHandler.handle(error, context, request);
}
}
/**
* Common error handling wrapper for execute methods
*/
private async executeWithErrorHandling<T>(
request: GenerateContentParameters,
userPromptId: string,
isStreaming: boolean,
executor: (
openaiRequest: OpenAI.Chat.ChatCompletionCreateParams,
context: RequestContext,
) => Promise<T>,
): Promise<T> {
const context = this.createRequestContext(userPromptId, isStreaming);
try {
const openaiRequest = await this.buildRequest(
request,
userPromptId,
isStreaming,
);
const result = await executor(openaiRequest, context);
context.duration = Date.now() - context.startTime;
return result;
} catch (error) {
context.duration = Date.now() - context.startTime;
// Log error
const openaiRequest = await this.buildRequest(
request,
userPromptId,
isStreaming,
);
await this.config.telemetryService.logError(
context,
error,
openaiRequest,
);
// Handle and throw enhanced error
this.config.errorHandler.handle(error, context, request);
}
}
/**
* Create request context with common properties
*/
private createRequestContext(
userPromptId: string,
isStreaming: boolean,
): RequestContext {
return {
userPromptId,
model: this.contentGeneratorConfig.model,
authType: this.contentGeneratorConfig.authType || 'unknown',
startTime: Date.now(),
duration: 0,
isStreaming,
};
}
}

View File

@@ -0,0 +1,61 @@
# Provider Structure
This folder contains the different provider implementations for the Qwen Code refactor system.
## File Structure
- `constants.ts` - Common constants used across all providers
- `types.ts` - Type definitions and interfaces for providers
- `default.ts` - Default provider for standard OpenAI-compatible APIs
- `dashscope.ts` - DashScope (Qwen) specific provider implementation
- `openrouter.ts` - OpenRouter specific provider implementation
- `index.ts` - Main export file for all providers
## Provider Types
### Default Provider
The `DefaultOpenAICompatibleProvider` is the fallback provider for standard OpenAI-compatible APIs. It provides basic functionality without special enhancements and passes through all request parameters.
### DashScope Provider
The `DashScopeOpenAICompatibleProvider` handles DashScope (Qwen) specific features like cache control and metadata.
### OpenRouter Provider
The `OpenRouterOpenAICompatibleProvider` handles OpenRouter specific headers and configurations.
## Adding a New Provider
To add a new provider:
1. Create a new file (e.g., `newprovider.ts`) in this folder
2. Implement the `OpenAICompatibleProvider` interface
3. Add a static method to identify if a config belongs to this provider
4. Export the class from `index.ts`
5. The main `provider.ts` file will automatically re-export it
## Provider Interface
All providers must implement:
- `buildHeaders()` - Build HTTP headers for the provider
- `buildClient()` - Create and configure the OpenAI client
- `buildRequest()` - Transform requests before sending to the provider
## Example
```typescript
export class NewProviderOpenAICompatibleProvider
implements OpenAICompatibleProvider
{
// Implementation...
static isNewProviderProvider(
contentGeneratorConfig: ContentGeneratorConfig,
): boolean {
// Logic to identify this provider
return true;
}
}
```

View File

@@ -0,0 +1,210 @@
import OpenAI from 'openai';
import { Config } from '../../../config/config.js';
import { AuthType, ContentGeneratorConfig } from '../../contentGenerator.js';
import { DEFAULT_TIMEOUT, DEFAULT_MAX_RETRIES } from '../constants.js';
import {
OpenAICompatibleProvider,
DashScopeRequestMetadata,
ChatCompletionContentPartTextWithCache,
ChatCompletionContentPartWithCache,
} from './types.js';
export class DashScopeOpenAICompatibleProvider
implements OpenAICompatibleProvider
{
private contentGeneratorConfig: ContentGeneratorConfig;
private cliConfig: Config;
constructor(
contentGeneratorConfig: ContentGeneratorConfig,
cliConfig: Config,
) {
this.cliConfig = cliConfig;
this.contentGeneratorConfig = contentGeneratorConfig;
}
static isDashScopeProvider(
contentGeneratorConfig: ContentGeneratorConfig,
): boolean {
const authType = contentGeneratorConfig.authType;
const baseUrl = contentGeneratorConfig.baseUrl;
return (
authType === AuthType.QWEN_OAUTH ||
baseUrl === 'https://dashscope.aliyuncs.com/compatible-mode/v1' ||
baseUrl === 'https://dashscope-intl.aliyuncs.com/compatible-mode/v1'
);
}
buildHeaders(): Record<string, string | undefined> {
const version = this.cliConfig.getCliVersion() || 'unknown';
const userAgent = `QwenCode/${version} (${process.platform}; ${process.arch})`;
const { authType } = this.contentGeneratorConfig;
return {
'User-Agent': userAgent,
'X-DashScope-CacheControl': 'enable',
'X-DashScope-UserAgent': userAgent,
'X-DashScope-AuthType': authType,
};
}
buildClient(): OpenAI {
const {
apiKey,
baseUrl,
timeout = DEFAULT_TIMEOUT,
maxRetries = DEFAULT_MAX_RETRIES,
} = this.contentGeneratorConfig;
const defaultHeaders = this.buildHeaders();
return new OpenAI({
apiKey,
baseURL: baseUrl,
timeout,
maxRetries,
defaultHeaders,
});
}
buildRequest(
request: OpenAI.Chat.ChatCompletionCreateParams,
userPromptId: string,
): OpenAI.Chat.ChatCompletionCreateParams {
let messages = request.messages;
// Apply DashScope cache control only if not disabled
if (!this.shouldDisableCacheControl()) {
// Add cache control to system and last messages for DashScope providers
// Only add cache control to system message for non-streaming requests
const cacheTarget = request.stream ? 'both' : 'system';
messages = this.addDashScopeCacheControl(messages, cacheTarget);
}
return {
...request, // Preserve all original parameters including sampling params
messages,
...(this.buildMetadata(userPromptId) || {}),
};
}
buildMetadata(userPromptId: string): DashScopeRequestMetadata {
return {
metadata: {
sessionId: this.cliConfig.getSessionId?.(),
promptId: userPromptId,
},
};
}
/**
* Add cache control flag to specified message(s) for DashScope providers
*/
private addDashScopeCacheControl(
messages: OpenAI.Chat.ChatCompletionMessageParam[],
target: 'system' | 'last' | 'both' = 'both',
): OpenAI.Chat.ChatCompletionMessageParam[] {
if (messages.length === 0) {
return messages;
}
let updatedMessages = [...messages];
// Add cache control to system message if requested
if (target === 'system' || target === 'both') {
updatedMessages = this.addCacheControlToMessage(
updatedMessages,
'system',
);
}
// Add cache control to last message if requested
if (target === 'last' || target === 'both') {
updatedMessages = this.addCacheControlToMessage(updatedMessages, 'last');
}
return updatedMessages;
}
/**
* Helper method to add cache control to a specific message
*/
private addCacheControlToMessage(
messages: OpenAI.Chat.ChatCompletionMessageParam[],
target: 'system' | 'last',
): OpenAI.Chat.ChatCompletionMessageParam[] {
const updatedMessages = [...messages];
let messageIndex: number;
if (target === 'system') {
// Find the first system message
messageIndex = messages.findIndex((msg) => msg.role === 'system');
if (messageIndex === -1) {
return updatedMessages;
}
} else {
// Get the last message
messageIndex = messages.length - 1;
}
const message = updatedMessages[messageIndex];
// Only process messages that have content
if ('content' in message && message.content !== null) {
if (typeof message.content === 'string') {
// Convert string content to array format with cache control
const messageWithArrayContent = {
...message,
content: [
{
type: 'text',
text: message.content,
cache_control: { type: 'ephemeral' },
} as ChatCompletionContentPartTextWithCache,
],
};
updatedMessages[messageIndex] =
messageWithArrayContent as OpenAI.Chat.ChatCompletionMessageParam;
} else if (Array.isArray(message.content)) {
// If content is already an array, add cache_control to the last item
const contentArray = [
...message.content,
] as ChatCompletionContentPartWithCache[];
if (contentArray.length > 0) {
const lastItem = contentArray[contentArray.length - 1];
if (lastItem.type === 'text') {
// Add cache_control to the last text item
contentArray[contentArray.length - 1] = {
...lastItem,
cache_control: { type: 'ephemeral' },
} as ChatCompletionContentPartTextWithCache;
} else {
// If the last item is not text, add a new text item with cache_control
contentArray.push({
type: 'text',
text: '',
cache_control: { type: 'ephemeral' },
} as ChatCompletionContentPartTextWithCache);
}
const messageWithCache = {
...message,
content: contentArray,
};
updatedMessages[messageIndex] =
messageWithCache as OpenAI.Chat.ChatCompletionMessageParam;
}
}
}
return updatedMessages;
}
/**
* Check if cache control should be disabled based on configuration.
*
* @returns true if cache control should be disabled, false otherwise
*/
private shouldDisableCacheControl(): boolean {
return (
this.cliConfig.getContentGeneratorConfig()?.disableCacheControl === true
);
}
}

View File

@@ -0,0 +1,58 @@
import OpenAI from 'openai';
import { Config } from '../../../config/config.js';
import { ContentGeneratorConfig } from '../../contentGenerator.js';
import { DEFAULT_TIMEOUT, DEFAULT_MAX_RETRIES } from '../constants.js';
import { OpenAICompatibleProvider } from './types.js';
/**
* Default provider for standard OpenAI-compatible APIs
*/
export class DefaultOpenAICompatibleProvider
implements OpenAICompatibleProvider
{
private contentGeneratorConfig: ContentGeneratorConfig;
private cliConfig: Config;
constructor(
contentGeneratorConfig: ContentGeneratorConfig,
cliConfig: Config,
) {
this.cliConfig = cliConfig;
this.contentGeneratorConfig = contentGeneratorConfig;
}
buildHeaders(): Record<string, string | undefined> {
const version = this.cliConfig.getCliVersion() || 'unknown';
const userAgent = `QwenCode/${version} (${process.platform}; ${process.arch})`;
return {
'User-Agent': userAgent,
};
}
buildClient(): OpenAI {
const {
apiKey,
baseUrl,
timeout = DEFAULT_TIMEOUT,
maxRetries = DEFAULT_MAX_RETRIES,
} = this.contentGeneratorConfig;
const defaultHeaders = this.buildHeaders();
return new OpenAI({
apiKey,
baseURL: baseUrl,
timeout,
maxRetries,
defaultHeaders,
});
}
buildRequest(
request: OpenAI.Chat.ChatCompletionCreateParams,
_userPromptId: string,
): OpenAI.Chat.ChatCompletionCreateParams {
// Default provider doesn't need special enhancements, just pass through all parameters
return {
...request, // Preserve all original parameters including sampling params
};
}
}

View File

@@ -0,0 +1,9 @@
export { DashScopeOpenAICompatibleProvider } from './dashscope.js';
export { OpenRouterOpenAICompatibleProvider } from './openrouter.js';
export { DefaultOpenAICompatibleProvider } from './default.js';
export type {
OpenAICompatibleProvider,
DashScopeRequestMetadata,
ChatCompletionContentPartTextWithCache,
ChatCompletionContentPartWithCache,
} from './types.js';

View File

@@ -0,0 +1,64 @@
import OpenAI from 'openai';
import { Config } from '../../../config/config.js';
import { ContentGeneratorConfig } from '../../contentGenerator.js';
import { DEFAULT_TIMEOUT, DEFAULT_MAX_RETRIES } from '../constants.js';
import { OpenAICompatibleProvider } from './types.js';
export class OpenRouterOpenAICompatibleProvider
implements OpenAICompatibleProvider
{
private contentGeneratorConfig: ContentGeneratorConfig;
private cliConfig: Config;
constructor(
contentGeneratorConfig: ContentGeneratorConfig,
cliConfig: Config,
) {
this.cliConfig = cliConfig;
this.contentGeneratorConfig = contentGeneratorConfig;
}
static isOpenRouterProvider(
contentGeneratorConfig: ContentGeneratorConfig,
): boolean {
const baseURL = contentGeneratorConfig.baseUrl || '';
return baseURL.includes('openrouter.ai');
}
buildHeaders(): Record<string, string | undefined> {
const version = this.cliConfig.getCliVersion() || 'unknown';
const userAgent = `QwenCode/${version} (${process.platform}; ${process.arch})`;
return {
'User-Agent': userAgent,
'HTTP-Referer': 'https://github.com/QwenLM/qwen-code.git',
'X-Title': 'Qwen Code',
};
}
buildClient(): OpenAI {
const {
apiKey,
baseUrl,
timeout = DEFAULT_TIMEOUT,
maxRetries = DEFAULT_MAX_RETRIES,
} = this.contentGeneratorConfig;
const defaultHeaders = this.buildHeaders();
return new OpenAI({
apiKey,
baseURL: baseUrl,
timeout,
maxRetries,
defaultHeaders,
});
}
buildRequest(
request: OpenAI.Chat.ChatCompletionCreateParams,
_userPromptId: string,
): OpenAI.Chat.ChatCompletionCreateParams {
// OpenRouter doesn't need special enhancements, just pass through all parameters
return {
...request, // Preserve all original parameters including sampling params
};
}
}

View File

@@ -0,0 +1,28 @@
import OpenAI from 'openai';
// Extended types to support cache_control for DashScope
export interface ChatCompletionContentPartTextWithCache
extends OpenAI.Chat.ChatCompletionContentPartText {
cache_control?: { type: 'ephemeral' };
}
export type ChatCompletionContentPartWithCache =
| ChatCompletionContentPartTextWithCache
| OpenAI.Chat.ChatCompletionContentPartImage
| OpenAI.Chat.ChatCompletionContentPartRefusal;
export interface OpenAICompatibleProvider {
buildHeaders(): Record<string, string | undefined>;
buildClient(): OpenAI;
buildRequest(
request: OpenAI.Chat.ChatCompletionCreateParams,
userPromptId: string,
): OpenAI.Chat.ChatCompletionCreateParams;
}
export type DashScopeRequestMetadata = {
metadata: {
sessionId?: string;
promptId: string;
};
};

View File

@@ -0,0 +1,111 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import OpenAI from 'openai';
import { GenerateContentResponse, Part, FinishReason } from '@google/genai';
import { Converter } from './converter.js';
export interface ToolCallAccumulator {
id?: string;
name?: string;
arguments: string;
}
export class StreamingManager {
private toolCallAccumulator = new Map<number, ToolCallAccumulator>();
constructor(private converter: Converter) {}
async *processStream(
stream: AsyncIterable<OpenAI.Chat.ChatCompletionChunk>,
): AsyncGenerator<GenerateContentResponse> {
// Reset the accumulator for each new stream
this.toolCallAccumulator.clear();
for await (const chunk of stream) {
const response = this.converter.convertOpenAIChunkToGemini(chunk);
// Ignore empty responses, which would cause problems with downstream code
// that expects a valid response.
if (
response.candidates?.[0]?.content?.parts?.length === 0 &&
!response.usageMetadata
) {
continue;
}
yield response;
}
}
/**
* Combine streaming responses for logging purposes
*/
combineStreamResponsesForLogging(
responses: GenerateContentResponse[],
model: string,
): GenerateContentResponse {
if (responses.length === 0) {
return new GenerateContentResponse();
}
const lastResponse = responses[responses.length - 1];
// Find the last response with usage metadata
const finalUsageMetadata = responses
.slice()
.reverse()
.find((r) => r.usageMetadata)?.usageMetadata;
// Combine all text content from the stream
const combinedParts: Part[] = [];
let combinedText = '';
const functionCalls: Part[] = [];
for (const response of responses) {
if (response.candidates?.[0]?.content?.parts) {
for (const part of response.candidates[0].content.parts) {
if ('text' in part && part.text) {
combinedText += part.text;
} else if ('functionCall' in part && part.functionCall) {
functionCalls.push(part);
}
}
}
}
// Add combined text if any
if (combinedText) {
combinedParts.push({ text: combinedText });
}
// Add function calls
combinedParts.push(...functionCalls);
// Create combined response
const combinedResponse = new GenerateContentResponse();
combinedResponse.candidates = [
{
content: {
parts: combinedParts,
role: 'model' as const,
},
finishReason:
responses[responses.length - 1]?.candidates?.[0]?.finishReason ||
FinishReason.FINISH_REASON_UNSPECIFIED,
index: 0,
safetyRatings: [],
},
];
combinedResponse.responseId = lastResponse?.responseId;
combinedResponse.createTime = lastResponse?.createTime;
combinedResponse.modelVersion = model;
combinedResponse.promptFeedback = { safetyRatings: [] };
combinedResponse.usageMetadata = finalUsageMetadata;
return combinedResponse;
}
}

View File

@@ -0,0 +1,137 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { Config } from '../../config/config.js';
import { logApiError, logApiResponse } from '../../telemetry/loggers.js';
import { ApiErrorEvent, ApiResponseEvent } from '../../telemetry/types.js';
import { openaiLogger } from '../../utils/openaiLogger.js';
import { GenerateContentResponse } from '@google/genai';
import OpenAI from 'openai';
export interface RequestContext {
userPromptId: string;
model: string;
authType: string;
startTime: number;
duration: number;
isStreaming: boolean;
}
export interface TelemetryService {
logSuccess(
context: RequestContext,
response: GenerateContentResponse,
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
openaiResponse?: OpenAI.Chat.ChatCompletion,
): Promise<void>;
logError(
context: RequestContext,
error: unknown,
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
): Promise<void>;
logStreamingSuccess(
context: RequestContext,
responses: GenerateContentResponse[],
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
openaiResponse?: OpenAI.Chat.ChatCompletion,
): Promise<void>;
}
export class DefaultTelemetryService implements TelemetryService {
constructor(
private config: Config,
private enableOpenAILogging: boolean = false,
) {}
async logSuccess(
context: RequestContext,
response: GenerateContentResponse,
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
openaiResponse?: OpenAI.Chat.ChatCompletion,
): Promise<void> {
// Log API response event for UI telemetry
const responseEvent = new ApiResponseEvent(
response.responseId || 'unknown',
context.model,
context.duration,
context.userPromptId,
context.authType,
response.usageMetadata,
);
logApiResponse(this.config, responseEvent);
// Log interaction if enabled
if (this.enableOpenAILogging && openaiRequest && openaiResponse) {
await openaiLogger.logInteraction(openaiRequest, openaiResponse);
}
}
async logError(
context: RequestContext,
error: unknown,
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
): Promise<void> {
const errorMessage = error instanceof Error ? error.message : String(error);
// Log API error event for UI telemetry
const errorEvent = new ApiErrorEvent(
// eslint-disable-next-line @typescript-eslint/no-explicit-any
(error as any).requestID || 'unknown',
context.model,
errorMessage,
context.duration,
context.userPromptId,
context.authType,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
(error as any).type,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
(error as any).code,
);
logApiError(this.config, errorEvent);
// Log error interaction if enabled
if (this.enableOpenAILogging && openaiRequest) {
await openaiLogger.logInteraction(
openaiRequest,
undefined,
error as Error,
);
}
}
async logStreamingSuccess(
context: RequestContext,
responses: GenerateContentResponse[],
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
openaiResponse?: OpenAI.Chat.ChatCompletion,
): Promise<void> {
// Get final usage metadata from the last response that has it
const finalUsageMetadata = responses
.slice()
.reverse()
.find((r) => r.usageMetadata)?.usageMetadata;
// Log API response event for UI telemetry
const responseEvent = new ApiResponseEvent(
responses[responses.length - 1]?.responseId || 'unknown',
context.model,
context.duration,
context.userPromptId,
context.authType,
finalUsageMetadata,
);
logApiResponse(this.config, responseEvent);
// Log interaction if enabled
if (this.enableOpenAILogging && openaiRequest && openaiResponse) {
await openaiLogger.logInteraction(openaiRequest, openaiResponse);
}
}
}

View File

@@ -22,7 +22,7 @@ import {
import { QwenContentGenerator } from './qwenContentGenerator.js';
import { SharedTokenManager } from './sharedTokenManager.js';
import { Config } from '../config/config.js';
import { AuthType, ContentGeneratorConfig } from '../core/contentGenerator.js';
import { AuthType } from '../core/contentGenerator.js';
// Mock SharedTokenManager
vi.mock('./sharedTokenManager.js', () => ({
@@ -132,20 +132,21 @@ vi.mock('./sharedTokenManager.js', () => ({
}));
// Mock the OpenAIContentGenerator parent class
vi.mock('../core/openaiContentGenerator.js', () => ({
vi.mock('../core/refactor/openaiContentGenerator.js', () => ({
OpenAIContentGenerator: class {
pipeline: {
client: {
apiKey: string;
baseURL: string;
};
};
constructor(
contentGeneratorConfig: ContentGeneratorConfig,
_config: Config,
) {
this.client = {
apiKey: contentGeneratorConfig.apiKey || 'test-key',
baseURL: contentGeneratorConfig.baseUrl || 'https://api.openai.com/v1',
constructor(_config: Config, _provider: unknown) {
this.pipeline = {
client: {
apiKey: 'test-key',
baseURL: 'https://api.openai.com/v1',
},
};
}
@@ -220,7 +221,10 @@ describe('QwenContentGenerator', () => {
// Mock Config
mockConfig = {
getContentGeneratorConfig: vi.fn().mockReturnValue({
model: 'qwen-turbo',
apiKey: 'test-api-key',
authType: 'qwen',
baseUrl: 'https://dashscope.aliyuncs.com/compatible-mode/v1',
enableOpenAILogging: false,
timeout: 120000,
maxRetries: 3,
@@ -230,6 +234,9 @@ describe('QwenContentGenerator', () => {
top_p: 0.9,
},
}),
getCliVersion: vi.fn().mockReturnValue('1.0.0'),
getSessionId: vi.fn().mockReturnValue('test-session-id'),
getUsageStatisticsEnabled: vi.fn().mockReturnValue(false),
} as unknown as Config;
// Mock QwenOAuth2Client
@@ -245,7 +252,11 @@ describe('QwenContentGenerator', () => {
// Create QwenContentGenerator instance
const contentGeneratorConfig = {
model: 'qwen-turbo',
apiKey: 'test-api-key',
authType: AuthType.QWEN_OAUTH,
baseUrl: 'https://dashscope.aliyuncs.com/compatible-mode/v1',
timeout: 120000,
maxRetries: 3,
};
qwenContentGenerator = new QwenContentGenerator(
mockQwenClient,

View File

@@ -4,7 +4,8 @@
* SPDX-License-Identifier: Apache-2.0
*/
import { OpenAIContentGenerator } from '../core/openaiContentGenerator.js';
import { OpenAIContentGenerator } from '../core/refactor/openaiContentGenerator.js';
import { DashScopeOpenAICompatibleProvider } from '../core/refactor/provider/dashscope.js';
import { IQwenOAuth2Client } from './qwenOAuth2.js';
import { SharedTokenManager } from './sharedTokenManager.js';
import { Config } from '../config/config.js';
@@ -33,15 +34,24 @@ export class QwenContentGenerator extends OpenAIContentGenerator {
constructor(
qwenClient: IQwenOAuth2Client,
contentGeneratorConfig: ContentGeneratorConfig,
config: Config,
cliConfig: Config,
) {
// Initialize with empty API key, we'll override it dynamically
super(contentGeneratorConfig, config);
// Create DashScope provider for Qwen
const dashscopeProvider = new DashScopeOpenAICompatibleProvider(
contentGeneratorConfig,
cliConfig,
);
// Initialize with DashScope provider
super(contentGeneratorConfig, cliConfig, dashscopeProvider);
this.qwenClient = qwenClient;
this.sharedManager = SharedTokenManager.getInstance();
// Set default base URL, will be updated dynamically
this.client.baseURL = DEFAULT_QWEN_BASE_URL;
if (contentGeneratorConfig?.baseUrl && contentGeneratorConfig?.apiKey) {
this.pipeline.client.baseURL = contentGeneratorConfig?.baseUrl;
this.pipeline.client.apiKey = contentGeneratorConfig?.apiKey;
}
}
/**
@@ -106,46 +116,24 @@ export class QwenContentGenerator extends OpenAIContentGenerator {
* Execute an operation with automatic credential management and retry logic.
* This method handles:
* - Dynamic token and endpoint retrieval
* - Temporary client configuration updates
* - Automatic restoration of original configuration
* - Client configuration updates
* - Retry logic on authentication errors with token refresh
*
* @param operation - The operation to execute with updated client configuration
* @param restoreOnCompletion - Whether to restore original config after operation completes
* @returns The result of the operation
*/
private async executeWithCredentialManagement<T>(
operation: () => Promise<T>,
restoreOnCompletion: boolean = true,
): Promise<T> {
// Attempt the operation with credential management and retry logic
const attemptOperation = async (): Promise<T> => {
const { token, endpoint } = await this.getValidToken();
// Store original configuration
const originalApiKey = this.client.apiKey;
const originalBaseURL = this.client.baseURL;
// Apply dynamic configuration
this.client.apiKey = token;
this.client.baseURL = endpoint;
this.pipeline.client.apiKey = token;
this.pipeline.client.baseURL = endpoint;
try {
const result = await operation();
// For streaming operations, we may need to keep the configuration active
if (restoreOnCompletion) {
this.client.apiKey = originalApiKey;
this.client.baseURL = originalBaseURL;
}
return result;
} catch (error) {
// Always restore on error
this.client.apiKey = originalApiKey;
this.client.baseURL = originalBaseURL;
throw error;
}
return await operation();
};
// Execute with retry logic for auth errors
@@ -182,17 +170,14 @@ export class QwenContentGenerator extends OpenAIContentGenerator {
}
/**
* Override to use dynamic token and endpoint with automatic retry.
* Note: For streaming, the client configuration is not restored immediately
* since the generator may continue to be used after this method returns.
* Override to use dynamic token and endpoint with automatic retry
*/
override async generateContentStream(
request: GenerateContentParameters,
userPromptId: string,
): Promise<AsyncGenerator<GenerateContentResponse>> {
return this.executeWithCredentialManagement(
() => super.generateContentStream(request, userPromptId),
false, // Don't restore immediately for streaming
return this.executeWithCredentialManagement(() =>
super.generateContentStream(request, userPromptId),
);
}