refactor: optimize stream handling

This commit is contained in:
mingholy.lmh
2025-09-03 21:43:25 +08:00
parent 002f1e2f36
commit 65549193c1
18 changed files with 4643 additions and 547 deletions

View File

@@ -0,0 +1,71 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { describe, it, expect, beforeEach } from 'vitest';
import { OpenAIContentConverter } from './converter.js';
import { StreamingToolCallParser } from './streamingToolCallParser.js';
describe('OpenAIContentConverter', () => {
let converter: OpenAIContentConverter;
beforeEach(() => {
converter = new OpenAIContentConverter('test-model');
});
describe('resetStreamingToolCalls', () => {
it('should clear streaming tool calls accumulator', () => {
// Access private field for testing
const parser = (
converter as unknown as {
streamingToolCallParser: StreamingToolCallParser;
}
).streamingToolCallParser;
// Add some test data to the parser
parser.addChunk(0, '{"arg": "value"}', 'test-id', 'test-function');
parser.addChunk(1, '{"arg2": "value2"}', 'test-id-2', 'test-function-2');
// Verify data is present
expect(parser.getBuffer(0)).toBe('{"arg": "value"}');
expect(parser.getBuffer(1)).toBe('{"arg2": "value2"}');
// Call reset method
converter.resetStreamingToolCalls();
// Verify data is cleared
expect(parser.getBuffer(0)).toBe('');
expect(parser.getBuffer(1)).toBe('');
});
it('should be safe to call multiple times', () => {
// Call reset multiple times
converter.resetStreamingToolCalls();
converter.resetStreamingToolCalls();
converter.resetStreamingToolCalls();
// Should not throw any errors
const parser = (
converter as unknown as {
streamingToolCallParser: StreamingToolCallParser;
}
).streamingToolCallParser;
expect(parser.getBuffer(0)).toBe('');
});
it('should be safe to call on empty accumulator', () => {
// Call reset on empty accumulator
converter.resetStreamingToolCalls();
// Should not throw any errors
const parser = (
converter as unknown as {
streamingToolCallParser: StreamingToolCallParser;
}
).streamingToolCallParser;
expect(parser.getBuffer(0)).toBe('');
});
});
});

View File

@@ -15,28 +15,59 @@ import {
CallableTool,
FunctionCall,
FunctionResponse,
ContentListUnion,
ContentUnion,
PartUnion,
} from '@google/genai';
import OpenAI from 'openai';
import { safeJsonParse } from '../../utils/safeJsonParse.js';
import { StreamingToolCallParser } from './streamingToolCallParser.js';
/**
* Converter class for transforming data between Gemini and OpenAI formats
* Tool call accumulator for streaming responses
*/
export class Converter {
private model: string;
private streamingToolCalls: Map<
number,
{
export interface ToolCallAccumulator {
id?: string;
name?: string;
arguments: string;
}
> = new Map();
/**
* Parsed parts from Gemini content, categorized by type
*/
interface ParsedParts {
textParts: string[];
functionCalls: FunctionCall[];
functionResponses: FunctionResponse[];
mediaParts: Array<{
type: 'image' | 'audio' | 'file';
data: string;
mimeType: string;
fileUri?: string;
}>;
}
/**
* Converter class for transforming data between Gemini and OpenAI formats
*/
export class OpenAIContentConverter {
private model: string;
private streamingToolCallParser: StreamingToolCallParser =
new StreamingToolCallParser();
constructor(model: string) {
this.model = model;
}
/**
* Reset streaming tool calls parser for new stream processing
* This should be called at the beginning of each stream to prevent
* data pollution from previous incomplete streams
*/
resetStreamingToolCalls(): void {
this.streamingToolCallParser.reset();
}
/**
* Convert Gemini tool parameters to OpenAI JSON Schema format
*/
@@ -173,41 +204,31 @@ export class Converter {
const messages: OpenAI.Chat.ChatCompletionMessageParam[] = [];
// Handle system instruction from config
if (request.config?.systemInstruction) {
const systemInstruction = request.config.systemInstruction;
let systemText = '';
this.addSystemInstructionMessage(request, messages);
if (Array.isArray(systemInstruction)) {
systemText = systemInstruction
.map((content) => {
if (typeof content === 'string') return content;
if ('parts' in content) {
const contentObj = content as Content;
return (
contentObj.parts
?.map((p: Part) =>
typeof p === 'string' ? p : 'text' in p ? p.text : '',
)
.join('\n') || ''
// Handle contents
this.processContents(request.contents, messages);
// Clean up orphaned tool calls and merge consecutive assistant messages
const cleanedMessages = this.cleanOrphanedToolCalls(messages);
const mergedMessages =
this.mergeConsecutiveAssistantMessages(cleanedMessages);
return mergedMessages;
}
/**
* Extract and add system instruction message from request config
*/
private addSystemInstructionMessage(
request: GenerateContentParameters,
messages: OpenAI.Chat.ChatCompletionMessageParam[],
): void {
if (!request.config?.systemInstruction) return;
const systemText = this.extractTextFromContentUnion(
request.config.systemInstruction,
);
}
return '';
})
.join('\n');
} else if (typeof systemInstruction === 'string') {
systemText = systemInstruction;
} else if (
typeof systemInstruction === 'object' &&
'parts' in systemInstruction
) {
const systemContent = systemInstruction as Content;
systemText =
systemContent.parts
?.map((p: Part) =>
typeof p === 'string' ? p : 'text' in p ? p.text : '',
)
.join('\n') || '';
}
if (systemText) {
messages.push({
@@ -217,32 +238,41 @@ export class Converter {
}
}
// Handle contents
if (Array.isArray(request.contents)) {
for (const content of request.contents) {
/**
* Process contents and convert to OpenAI messages
*/
private processContents(
contents: ContentListUnion,
messages: OpenAI.Chat.ChatCompletionMessageParam[],
): void {
if (Array.isArray(contents)) {
for (const content of contents) {
this.processContent(content, messages);
}
} else if (contents) {
this.processContent(contents, messages);
}
}
/**
* Process a single content item and convert to OpenAI message(s)
*/
private processContent(
content: ContentUnion | PartUnion,
messages: OpenAI.Chat.ChatCompletionMessageParam[],
): void {
if (typeof content === 'string') {
messages.push({ role: 'user' as const, content });
} else if ('role' in content && 'parts' in content) {
// Check if this content has function calls or responses
const functionCalls: FunctionCall[] = [];
const functionResponses: FunctionResponse[] = [];
const textParts: string[] = [];
for (const part of content.parts || []) {
if (typeof part === 'string') {
textParts.push(part);
} else if ('text' in part && part.text) {
textParts.push(part.text);
} else if ('functionCall' in part && part.functionCall) {
functionCalls.push(part.functionCall);
} else if ('functionResponse' in part && part.functionResponse) {
functionResponses.push(part.functionResponse);
}
return;
}
// Handle function responses (tool results)
if (functionResponses.length > 0) {
for (const funcResponse of functionResponses) {
if (!this.isContentObject(content)) return;
const parsedParts = this.parseParts(content.parts || []);
// Handle function responses (tool results) first
if (parsedParts.functionResponses.length > 0) {
for (const funcResponse of parsedParts.functionResponses) {
messages.push({
role: 'tool' as const,
tool_call_id: funcResponse.id || '',
@@ -252,10 +282,12 @@ export class Converter {
: JSON.stringify(funcResponse.response),
});
}
return;
}
// Handle model messages with function calls
else if (content.role === 'model' && functionCalls.length > 0) {
const toolCalls = functionCalls.map((fc, index) => ({
if (content.role === 'model' && parsedParts.functionCalls.length > 0) {
const toolCalls = parsedParts.functionCalls.map((fc, index) => ({
id: fc.id || `call_${index}`,
type: 'function' as const,
function: {
@@ -266,46 +298,202 @@ export class Converter {
messages.push({
role: 'assistant' as const,
content: textParts.join('') || null,
content: parsedParts.textParts.join('') || null,
tool_calls: toolCalls,
});
return;
}
// Handle regular text messages
else {
const role =
content.role === 'model'
? ('assistant' as const)
: ('user' as const);
const text = textParts.join('');
if (text) {
messages.push({ role, content: text });
// Handle regular messages with multimodal content
const role = content.role === 'model' ? 'assistant' : 'user';
const openAIMessage = this.createMultimodalMessage(role, parsedParts);
if (openAIMessage) {
messages.push(openAIMessage);
}
}
/**
* Parse Gemini parts into categorized components
*/
private parseParts(parts: Part[]): ParsedParts {
const textParts: string[] = [];
const functionCalls: FunctionCall[] = [];
const functionResponses: FunctionResponse[] = [];
const mediaParts: Array<{
type: 'image' | 'audio' | 'file';
data: string;
mimeType: string;
fileUri?: string;
}> = [];
for (const part of parts) {
if (typeof part === 'string') {
textParts.push(part);
} else if ('text' in part && part.text) {
textParts.push(part.text);
} else if ('functionCall' in part && part.functionCall) {
functionCalls.push(part.functionCall);
} else if ('functionResponse' in part && part.functionResponse) {
functionResponses.push(part.functionResponse);
} else if ('inlineData' in part && part.inlineData) {
const { data, mimeType } = part.inlineData;
if (data && mimeType) {
const mediaType = this.getMediaType(mimeType);
mediaParts.push({ type: mediaType, data, mimeType });
}
} else if ('fileData' in part && part.fileData) {
const { fileUri, mimeType } = part.fileData;
if (fileUri && mimeType) {
const mediaType = this.getMediaType(mimeType);
mediaParts.push({
type: mediaType,
data: '',
mimeType,
fileUri,
});
}
}
}
return { textParts, functionCalls, functionResponses, mediaParts };
}
} else if (request.contents) {
if (typeof request.contents === 'string') {
messages.push({ role: 'user' as const, content: request.contents });
} else if ('role' in request.contents && 'parts' in request.contents) {
const content = request.contents;
const role =
content.role === 'model' ? ('assistant' as const) : ('user' as const);
const text =
/**
* Determine media type from MIME type
*/
private getMediaType(mimeType: string): 'image' | 'audio' | 'file' {
if (mimeType.startsWith('image/')) return 'image';
if (mimeType.startsWith('audio/')) return 'audio';
return 'file';
}
/**
* Create multimodal OpenAI message from parsed parts
*/
private createMultimodalMessage(
role: 'user' | 'assistant',
parsedParts: Pick<ParsedParts, 'textParts' | 'mediaParts'>,
): OpenAI.Chat.ChatCompletionMessageParam | null {
const { textParts, mediaParts } = parsedParts;
const combinedText = textParts.join('');
// If no media parts, return simple text message
if (mediaParts.length === 0) {
return combinedText ? { role, content: combinedText } : null;
}
// For assistant messages with media, convert to text only
// since OpenAI assistant messages don't support media content arrays
if (role === 'assistant') {
return combinedText
? { role: 'assistant' as const, content: combinedText }
: null;
}
// Create multimodal content array for user messages
const contentArray: OpenAI.Chat.ChatCompletionContentPart[] = [];
// Add text content
if (combinedText) {
contentArray.push({ type: 'text', text: combinedText });
}
// Add media content
for (const mediaPart of mediaParts) {
if (mediaPart.type === 'image') {
if (mediaPart.fileUri) {
// For file URIs, use the URI directly
contentArray.push({
type: 'image_url',
image_url: { url: mediaPart.fileUri },
});
} else if (mediaPart.data) {
// For inline data, create data URL
const dataUrl = `data:${mediaPart.mimeType};base64,${mediaPart.data}`;
contentArray.push({
type: 'image_url',
image_url: { url: dataUrl },
});
}
} else if (mediaPart.type === 'audio' && mediaPart.data) {
// Convert audio format from MIME type
const format = this.getAudioFormat(mediaPart.mimeType);
if (format) {
contentArray.push({
type: 'input_audio',
input_audio: {
data: mediaPart.data,
format: format as 'wav' | 'mp3',
},
});
}
}
// Note: File type is not directly supported in OpenAI's current API
// Could be extended in the future or handled as text description
}
return contentArray.length > 0
? { role: 'user' as const, content: contentArray }
: null;
}
/**
* Convert MIME type to OpenAI audio format
*/
private getAudioFormat(mimeType: string): 'wav' | 'mp3' | null {
if (mimeType.includes('wav')) return 'wav';
if (mimeType.includes('mp3') || mimeType.includes('mpeg')) return 'mp3';
return null;
}
/**
* Type guard to check if content is a valid Content object
*/
private isContentObject(
content: unknown,
): content is { role: string; parts: Part[] } {
return (
typeof content === 'object' &&
content !== null &&
'role' in content &&
'parts' in content &&
Array.isArray((content as Record<string, unknown>)['parts'])
);
}
/**
* Extract text content from various Gemini content union types
*/
private extractTextFromContentUnion(contentUnion: unknown): string {
if (typeof contentUnion === 'string') {
return contentUnion;
}
if (Array.isArray(contentUnion)) {
return contentUnion
.map((item) => this.extractTextFromContentUnion(item))
.filter(Boolean)
.join('\n');
}
if (typeof contentUnion === 'object' && contentUnion !== null) {
if ('parts' in contentUnion) {
const content = contentUnion as Content;
return (
content.parts
?.map((p: Part) =>
typeof p === 'string' ? p : 'text' in p ? p.text : '',
)
.join('\n') || '';
messages.push({ role, content: text });
?.map((part: Part) => {
if (typeof part === 'string') return part;
if ('text' in part) return part.text || '';
return '';
})
.filter(Boolean)
.join('\n') || ''
);
}
}
// Clean up orphaned tool calls and merge consecutive assistant messages
const cleanedMessages = this.cleanOrphanedToolCalls(messages);
const mergedMessages =
this.mergeConsecutiveAssistantMessages(cleanedMessages);
return mergedMessages;
return '';
}
/**
@@ -416,79 +604,52 @@ export class Converter {
}
}
// Handle tool calls - only accumulate during streaming, emit when complete
// Handle tool calls using the streaming parser
if (choice.delta?.tool_calls) {
for (const toolCall of choice.delta.tool_calls) {
const index = toolCall.index ?? 0;
// Get or create the tool call accumulator for this index
let accumulatedCall = this.streamingToolCalls.get(index);
if (!accumulatedCall) {
accumulatedCall = { arguments: '' };
this.streamingToolCalls.set(index, accumulatedCall);
}
// Update accumulated data
if (toolCall.id) {
accumulatedCall.id = toolCall.id;
}
if (toolCall.function?.name) {
// If this is a new function name, reset the arguments
if (accumulatedCall.name !== toolCall.function.name) {
accumulatedCall.arguments = '';
}
accumulatedCall.name = toolCall.function.name;
}
// Process the tool call chunk through the streaming parser
if (toolCall.function?.arguments) {
// Check if we already have a complete JSON object
const currentArgs = accumulatedCall.arguments;
const newArgs = toolCall.function.arguments;
// If current arguments already form a complete JSON and new arguments start a new object,
// this indicates a new tool call with the same name
let shouldReset = false;
if (currentArgs && newArgs.trim().startsWith('{')) {
try {
JSON.parse(currentArgs);
// If we can parse current arguments as complete JSON and new args start with {,
// this is likely a new tool call
shouldReset = true;
} catch {
// Current arguments are not complete JSON, continue accumulating
}
}
if (shouldReset) {
accumulatedCall.arguments = newArgs;
this.streamingToolCallParser.addChunk(
index,
toolCall.function.arguments,
toolCall.id,
toolCall.function.name,
);
} else {
accumulatedCall.arguments += newArgs;
}
// Handle metadata-only chunks (id and/or name without arguments)
this.streamingToolCallParser.addChunk(
index,
'', // Empty chunk for metadata-only updates
toolCall.id,
toolCall.function?.name,
);
}
}
}
// Only emit function calls when streaming is complete (finish_reason is present)
if (choice.finish_reason) {
for (const [, accumulatedCall] of this.streamingToolCalls) {
if (accumulatedCall.name) {
let args: Record<string, unknown> = {};
if (accumulatedCall.arguments) {
args = safeJsonParse(accumulatedCall.arguments, {});
}
const completedToolCalls =
this.streamingToolCallParser.getCompletedToolCalls();
for (const toolCall of completedToolCalls) {
if (toolCall.name) {
parts.push({
functionCall: {
id:
accumulatedCall.id ||
toolCall.id ||
`call_${Date.now()}_${Math.random().toString(36).substring(2, 9)}`,
name: accumulatedCall.name,
args,
name: toolCall.name,
args: toolCall.args,
},
});
}
}
// Clear all accumulated tool calls
this.streamingToolCalls.clear();
// Clear the parser for the next stream
this.streamingToolCallParser.reset();
}
response.candidates = [

View File

@@ -0,0 +1,393 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { describe, it, expect, vi, beforeEach, afterEach } from 'vitest';
import { GenerateContentParameters } from '@google/genai';
import { EnhancedErrorHandler } from './errorHandler.js';
import { RequestContext } from './telemetryService.js';
describe('EnhancedErrorHandler', () => {
let errorHandler: EnhancedErrorHandler;
let mockConsoleError: ReturnType<typeof vi.spyOn>;
let mockContext: RequestContext;
let mockRequest: GenerateContentParameters;
beforeEach(() => {
mockConsoleError = vi.spyOn(console, 'error').mockImplementation(() => {});
mockContext = {
userPromptId: 'test-prompt-id',
model: 'test-model',
authType: 'test-auth',
startTime: Date.now() - 5000,
duration: 5000,
isStreaming: false,
};
mockRequest = {
model: 'test-model',
contents: [{ parts: [{ text: 'test prompt' }] }],
};
});
afterEach(() => {
vi.restoreAllMocks();
});
describe('constructor', () => {
it('should create instance with default shouldSuppressLogging function', () => {
errorHandler = new EnhancedErrorHandler();
expect(errorHandler).toBeInstanceOf(EnhancedErrorHandler);
});
it('should create instance with custom shouldSuppressLogging function', () => {
const customSuppressLogging = vi.fn(() => true);
errorHandler = new EnhancedErrorHandler(customSuppressLogging);
expect(errorHandler).toBeInstanceOf(EnhancedErrorHandler);
});
});
describe('handle method', () => {
beforeEach(() => {
errorHandler = new EnhancedErrorHandler();
});
it('should throw the original error for non-timeout errors', () => {
const originalError = new Error('Test error');
expect(() => {
errorHandler.handle(originalError, mockContext, mockRequest);
}).toThrow(originalError);
});
it('should log error message for non-timeout errors', () => {
const originalError = new Error('Test error');
expect(() => {
errorHandler.handle(originalError, mockContext, mockRequest);
}).toThrow();
expect(mockConsoleError).toHaveBeenCalledWith(
'OpenAI API Error:',
'Test error',
);
});
it('should log streaming error message for streaming requests', () => {
const streamingContext = { ...mockContext, isStreaming: true };
const originalError = new Error('Test streaming error');
expect(() => {
errorHandler.handle(originalError, streamingContext, mockRequest);
}).toThrow();
expect(mockConsoleError).toHaveBeenCalledWith(
'OpenAI API Streaming Error:',
'Test streaming error',
);
});
it('should throw enhanced error message for timeout errors', () => {
const timeoutError = new Error('Request timeout');
expect(() => {
errorHandler.handle(timeoutError, mockContext, mockRequest);
}).toThrow(/Request timeout after 5s.*Troubleshooting tips:/s);
});
it('should not log error when suppression is enabled', () => {
const suppressLogging = vi.fn(() => true);
errorHandler = new EnhancedErrorHandler(suppressLogging);
const originalError = new Error('Test error');
expect(() => {
errorHandler.handle(originalError, mockContext, mockRequest);
}).toThrow();
expect(mockConsoleError).not.toHaveBeenCalled();
expect(suppressLogging).toHaveBeenCalledWith(originalError, mockRequest);
});
it('should handle string errors', () => {
const stringError = 'String error message';
expect(() => {
errorHandler.handle(stringError, mockContext, mockRequest);
}).toThrow(stringError);
expect(mockConsoleError).toHaveBeenCalledWith(
'OpenAI API Error:',
'String error message',
);
});
it('should handle null/undefined errors', () => {
expect(() => {
errorHandler.handle(null, mockContext, mockRequest);
}).toThrow();
expect(() => {
errorHandler.handle(undefined, mockContext, mockRequest);
}).toThrow();
});
});
describe('shouldSuppressErrorLogging method', () => {
it('should return false by default', () => {
errorHandler = new EnhancedErrorHandler();
const result = errorHandler.shouldSuppressErrorLogging(
new Error('test'),
mockRequest,
);
expect(result).toBe(false);
});
it('should use custom suppression function', () => {
const customSuppressLogging = vi.fn(() => true);
errorHandler = new EnhancedErrorHandler(customSuppressLogging);
const testError = new Error('test');
const result = errorHandler.shouldSuppressErrorLogging(
testError,
mockRequest,
);
expect(result).toBe(true);
expect(customSuppressLogging).toHaveBeenCalledWith(
testError,
mockRequest,
);
});
});
describe('timeout error detection', () => {
beforeEach(() => {
errorHandler = new EnhancedErrorHandler();
});
const timeoutErrorCases = [
{ name: 'timeout in message', error: new Error('Connection timeout') },
{ name: 'timed out in message', error: new Error('Request timed out') },
{
name: 'connection timeout',
error: new Error('connection timeout occurred'),
},
{ name: 'request timeout', error: new Error('request timeout error') },
{ name: 'read timeout', error: new Error('read timeout happened') },
{ name: 'etimedout', error: new Error('ETIMEDOUT error') },
{ name: 'esockettimedout', error: new Error('ESOCKETTIMEDOUT error') },
{ name: 'deadline exceeded', error: new Error('deadline exceeded') },
{
name: 'ETIMEDOUT code',
error: Object.assign(new Error('Network error'), { code: 'ETIMEDOUT' }),
},
{
name: 'ESOCKETTIMEDOUT code',
error: Object.assign(new Error('Socket error'), {
code: 'ESOCKETTIMEDOUT',
}),
},
{
name: 'timeout type',
error: Object.assign(new Error('Error'), { type: 'timeout' }),
},
];
timeoutErrorCases.forEach(({ name, error }) => {
it(`should detect timeout error: ${name}`, () => {
expect(() => {
errorHandler.handle(error, mockContext, mockRequest);
}).toThrow(/timeout.*Troubleshooting tips:/s);
});
});
it('should not detect non-timeout errors as timeout', () => {
const regularError = new Error('Regular API error');
expect(() => {
errorHandler.handle(regularError, mockContext, mockRequest);
}).toThrow(regularError);
expect(() => {
errorHandler.handle(regularError, mockContext, mockRequest);
}).not.toThrow(/Troubleshooting tips:/);
});
it('should handle case-insensitive timeout detection', () => {
const uppercaseTimeoutError = new Error('REQUEST TIMEOUT');
expect(() => {
errorHandler.handle(uppercaseTimeoutError, mockContext, mockRequest);
}).toThrow(/timeout.*Troubleshooting tips:/s);
});
});
describe('error message building', () => {
beforeEach(() => {
errorHandler = new EnhancedErrorHandler();
});
it('should build timeout error message for non-streaming requests', () => {
const timeoutError = new Error('timeout');
expect(() => {
errorHandler.handle(timeoutError, mockContext, mockRequest);
}).toThrow(
/Request timeout after 5s\. Try reducing input length or increasing timeout in config\./,
);
});
it('should build timeout error message for streaming requests', () => {
const streamingContext = { ...mockContext, isStreaming: true };
const timeoutError = new Error('timeout');
expect(() => {
errorHandler.handle(timeoutError, streamingContext, mockRequest);
}).toThrow(
/Streaming request timeout after 5s\. Try reducing input length or increasing timeout in config\./,
);
});
it('should use original error message for non-timeout errors', () => {
const originalError = new Error('Original error message');
expect(() => {
errorHandler.handle(originalError, mockContext, mockRequest);
}).toThrow('Original error message');
});
it('should handle non-Error objects', () => {
const objectError = { message: 'Object error', code: 500 };
expect(() => {
errorHandler.handle(objectError, mockContext, mockRequest);
}).toThrow(); // Non-timeout errors are thrown as-is
});
it('should convert non-Error objects to strings for timeout errors', () => {
// Create an object that will be detected as timeout error
const objectTimeoutError = {
toString: () => 'Connection timeout error',
message: 'timeout occurred',
code: 500,
};
expect(() => {
errorHandler.handle(objectTimeoutError, mockContext, mockRequest);
}).toThrow(/Request timeout after 5s.*Troubleshooting tips:/s);
});
it('should handle different duration values correctly', () => {
const contextWithDifferentDuration = { ...mockContext, duration: 12345 };
const timeoutError = new Error('timeout');
expect(() => {
errorHandler.handle(
timeoutError,
contextWithDifferentDuration,
mockRequest,
);
}).toThrow(/Request timeout after 12s\./);
});
});
describe('troubleshooting tips generation', () => {
beforeEach(() => {
errorHandler = new EnhancedErrorHandler();
});
it('should provide general troubleshooting tips for non-streaming requests', () => {
const timeoutError = new Error('timeout');
expect(() => {
errorHandler.handle(timeoutError, mockContext, mockRequest);
}).toThrow(
/Troubleshooting tips:\n- Reduce input length or complexity\n- Increase timeout in config: contentGenerator\.timeout\n- Check network connectivity\n- Consider using streaming mode for long responses/,
);
});
it('should provide streaming-specific troubleshooting tips for streaming requests', () => {
const streamingContext = { ...mockContext, isStreaming: true };
const timeoutError = new Error('timeout');
expect(() => {
errorHandler.handle(timeoutError, streamingContext, mockRequest);
}).toThrow(
/Streaming timeout troubleshooting:\n- Reduce input length or complexity\n- Increase timeout in config: contentGenerator\.timeout\n- Check network connectivity\n- Check network stability for streaming connections\n- Consider using non-streaming mode for very long inputs/,
);
});
});
describe('ErrorHandler interface compliance', () => {
it('should implement ErrorHandler interface correctly', () => {
errorHandler = new EnhancedErrorHandler();
// Check that the class implements the interface methods
expect(typeof errorHandler.handle).toBe('function');
expect(typeof errorHandler.shouldSuppressErrorLogging).toBe('function');
// Check method signatures by calling them
expect(() => {
errorHandler.handle(new Error('test'), mockContext, mockRequest);
}).toThrow();
expect(
errorHandler.shouldSuppressErrorLogging(new Error('test'), mockRequest),
).toBe(false);
});
});
describe('edge cases', () => {
beforeEach(() => {
errorHandler = new EnhancedErrorHandler();
});
it('should handle zero duration', () => {
const zeroContext = { ...mockContext, duration: 0 };
const timeoutError = new Error('timeout');
expect(() => {
errorHandler.handle(timeoutError, zeroContext, mockRequest);
}).toThrow(/Request timeout after 0s\./);
});
it('should handle negative duration', () => {
const negativeContext = { ...mockContext, duration: -1000 };
const timeoutError = new Error('timeout');
expect(() => {
errorHandler.handle(timeoutError, negativeContext, mockRequest);
}).toThrow(/Request timeout after -1s\./);
});
it('should handle very large duration', () => {
const largeContext = { ...mockContext, duration: 999999 };
const timeoutError = new Error('timeout');
expect(() => {
errorHandler.handle(timeoutError, largeContext, mockRequest);
}).toThrow(/Request timeout after 1000s\./);
});
it('should handle empty error message', () => {
const emptyError = new Error('');
expect(() => {
errorHandler.handle(emptyError, mockContext, mockRequest);
}).toThrow(emptyError);
expect(mockConsoleError).toHaveBeenCalledWith('OpenAI API Error:', '');
});
it('should handle error with only whitespace message', () => {
const whitespaceError = new Error(' \n\t ');
expect(() => {
errorHandler.handle(whitespaceError, mockContext, mockRequest);
}).toThrow(whitespaceError);
});
});
});

View File

@@ -17,22 +17,17 @@ import {
DefaultOpenAICompatibleProvider,
} from './provider/index.js';
// Main classes
export { OpenAIContentGenerator } from './openaiContentGenerator.js';
export { ContentGenerationPipeline, type PipelineConfig } from './pipeline.js';
// Providers
export {
type OpenAICompatibleProvider,
DashScopeOpenAICompatibleProvider,
OpenRouterOpenAICompatibleProvider,
} from './provider/index.js';
// Utilities
export { Converter } from './converter.js';
export { StreamingManager } from './streamingManager.js';
export { OpenAIContentConverter } from './converter.js';
// Factory utility functions
/**
* Create an OpenAI-compatible content generator with the appropriate provider
*/

View File

@@ -0,0 +1,278 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { describe, it, expect, vi, beforeEach, afterEach } from 'vitest';
import { OpenAIContentGenerator } from './openaiContentGenerator.js';
import { Config } from '../../config/config.js';
import { AuthType } from '../contentGenerator.js';
import type {
GenerateContentParameters,
CountTokensParameters,
} from '@google/genai';
import type { OpenAICompatibleProvider } from './provider/index.js';
import OpenAI from 'openai';
// Mock tiktoken
vi.mock('tiktoken', () => ({
get_encoding: vi.fn().mockReturnValue({
encode: vi.fn().mockReturnValue(new Array(50)), // Mock 50 tokens
free: vi.fn(),
}),
}));
describe('OpenAIContentGenerator (Refactored)', () => {
let generator: OpenAIContentGenerator;
let mockConfig: Config;
beforeEach(() => {
// Reset mocks
vi.clearAllMocks();
// Mock config
mockConfig = {
getContentGeneratorConfig: vi.fn().mockReturnValue({
authType: 'openai',
enableOpenAILogging: false,
timeout: 120000,
maxRetries: 3,
samplingParams: {
temperature: 0.7,
max_tokens: 1000,
top_p: 0.9,
},
}),
getCliVersion: vi.fn().mockReturnValue('1.0.0'),
} as unknown as Config;
// Create generator instance
const contentGeneratorConfig = {
model: 'gpt-4',
apiKey: 'test-key',
authType: AuthType.USE_OPENAI,
enableOpenAILogging: false,
timeout: 120000,
maxRetries: 3,
samplingParams: {
temperature: 0.7,
max_tokens: 1000,
top_p: 0.9,
},
};
// Create a minimal mock provider
const mockProvider: OpenAICompatibleProvider = {
buildHeaders: vi.fn().mockReturnValue({}),
buildClient: vi.fn().mockReturnValue({
chat: {
completions: {
create: vi.fn(),
},
},
embeddings: {
create: vi.fn(),
},
} as unknown as OpenAI),
buildRequest: vi.fn().mockImplementation((req) => req),
};
generator = new OpenAIContentGenerator(
contentGeneratorConfig,
mockConfig,
mockProvider,
);
});
afterEach(() => {
vi.restoreAllMocks();
});
describe('constructor', () => {
it('should initialize with basic configuration', () => {
expect(generator).toBeDefined();
});
});
describe('generateContent', () => {
it('should delegate to pipeline.execute', async () => {
// This test verifies the method exists and can be called
expect(typeof generator.generateContent).toBe('function');
});
});
describe('generateContentStream', () => {
it('should delegate to pipeline.executeStream', async () => {
// This test verifies the method exists and can be called
expect(typeof generator.generateContentStream).toBe('function');
});
});
describe('countTokens', () => {
it('should count tokens using tiktoken', async () => {
const request: CountTokensParameters = {
contents: [{ role: 'user', parts: [{ text: 'Hello world' }] }],
model: 'gpt-4',
};
const result = await generator.countTokens(request);
expect(result.totalTokens).toBe(50); // Mocked value
});
it('should fall back to character approximation if tiktoken fails', async () => {
// Mock tiktoken to throw error
vi.doMock('tiktoken', () => ({
get_encoding: vi.fn().mockImplementation(() => {
throw new Error('Tiktoken failed');
}),
}));
const request: CountTokensParameters = {
contents: [{ role: 'user', parts: [{ text: 'Hello world' }] }],
model: 'gpt-4',
};
const result = await generator.countTokens(request);
// Should use character approximation (content length / 4)
expect(result.totalTokens).toBeGreaterThan(0);
});
});
describe('embedContent', () => {
it('should delegate to pipeline.client.embeddings.create', async () => {
// This test verifies the method exists and can be called
expect(typeof generator.embedContent).toBe('function');
});
});
describe('shouldSuppressErrorLogging', () => {
it('should return false by default', () => {
// Create a test subclass to access the protected method
class TestGenerator extends OpenAIContentGenerator {
testShouldSuppressErrorLogging(
error: unknown,
request: GenerateContentParameters,
): boolean {
return this.shouldSuppressErrorLogging(error, request);
}
}
const contentGeneratorConfig = {
model: 'gpt-4',
apiKey: 'test-key',
authType: AuthType.USE_OPENAI,
enableOpenAILogging: false,
timeout: 120000,
maxRetries: 3,
samplingParams: {
temperature: 0.7,
max_tokens: 1000,
top_p: 0.9,
},
};
// Create a minimal mock provider
const mockProvider: OpenAICompatibleProvider = {
buildHeaders: vi.fn().mockReturnValue({}),
buildClient: vi.fn().mockReturnValue({
chat: {
completions: {
create: vi.fn(),
},
},
embeddings: {
create: vi.fn(),
},
} as unknown as OpenAI),
buildRequest: vi.fn().mockImplementation((req) => req),
};
const testGenerator = new TestGenerator(
contentGeneratorConfig,
mockConfig,
mockProvider,
);
const request: GenerateContentParameters = {
contents: [{ role: 'user', parts: [{ text: 'Hello' }] }],
model: 'gpt-4',
};
const result = testGenerator.testShouldSuppressErrorLogging(
new Error('Test error'),
request,
);
expect(result).toBe(false);
});
it('should allow subclasses to override error suppression behavior', async () => {
class TestGenerator extends OpenAIContentGenerator {
testShouldSuppressErrorLogging(
error: unknown,
request: GenerateContentParameters,
): boolean {
return this.shouldSuppressErrorLogging(error, request);
}
protected override shouldSuppressErrorLogging(
_error: unknown,
_request: GenerateContentParameters,
): boolean {
return true; // Always suppress for this test
}
}
const contentGeneratorConfig = {
model: 'gpt-4',
apiKey: 'test-key',
authType: AuthType.USE_OPENAI,
enableOpenAILogging: false,
timeout: 120000,
maxRetries: 3,
samplingParams: {
temperature: 0.7,
max_tokens: 1000,
top_p: 0.9,
},
};
// Create a minimal mock provider
const mockProvider: OpenAICompatibleProvider = {
buildHeaders: vi.fn().mockReturnValue({}),
buildClient: vi.fn().mockReturnValue({
chat: {
completions: {
create: vi.fn(),
},
},
embeddings: {
create: vi.fn(),
},
} as unknown as OpenAI),
buildRequest: vi.fn().mockImplementation((req) => req),
};
const testGenerator = new TestGenerator(
contentGeneratorConfig,
mockConfig,
mockProvider,
);
const request: GenerateContentParameters = {
contents: [{ role: 'user', parts: [{ text: 'Hello' }] }],
model: 'gpt-4',
};
const result = testGenerator.testShouldSuppressErrorLogging(
new Error('Test error'),
request,
);
expect(result).toBe(true);
});
});
});

View File

@@ -70,12 +70,82 @@ export class OpenAIContentGenerator implements ContentGenerator {
async countTokens(
request: CountTokensParameters,
): Promise<CountTokensResponse> {
return this.pipeline.countTokens(request);
// Use tiktoken for accurate token counting
const content = JSON.stringify(request.contents);
let totalTokens = 0;
try {
const { get_encoding } = await import('tiktoken');
const encoding = get_encoding('cl100k_base'); // GPT-4 encoding, but estimate for qwen
totalTokens = encoding.encode(content).length;
encoding.free();
} catch (error) {
console.warn(
'Failed to load tiktoken, falling back to character approximation:',
error,
);
// Fallback: rough approximation using character count
totalTokens = Math.ceil(content.length / 4); // Rough estimate: 1 token ≈ 4 characters
}
return {
totalTokens,
};
}
async embedContent(
request: EmbedContentParameters,
): Promise<EmbedContentResponse> {
return this.pipeline.embedContent(request);
// Extract text from contents
let text = '';
if (Array.isArray(request.contents)) {
text = request.contents
.map((content) => {
if (typeof content === 'string') return content;
if ('parts' in content && content.parts) {
return content.parts
.map((part) =>
typeof part === 'string'
? part
: 'text' in part
? (part as { text?: string }).text || ''
: '',
)
.join(' ');
}
return '';
})
.join(' ');
} else if (request.contents) {
if (typeof request.contents === 'string') {
text = request.contents;
} else if ('parts' in request.contents && request.contents.parts) {
text = request.contents.parts
.map((part) =>
typeof part === 'string' ? part : 'text' in part ? part.text : '',
)
.join(' ');
}
}
try {
const embedding = await this.pipeline.client.embeddings.create({
model: 'text-embedding-ada-002', // Default embedding model
input: text,
});
return {
embeddings: [
{
values: embedding.data[0].embedding,
},
],
};
} catch (error) {
console.error('OpenAI API Embedding Error:', error);
throw new Error(
`OpenAI API error: ${error instanceof Error ? error.message : String(error)}`,
);
}
}
}

View File

@@ -8,18 +8,13 @@ import OpenAI from 'openai';
import {
GenerateContentParameters,
GenerateContentResponse,
CountTokensParameters,
CountTokensResponse,
EmbedContentParameters,
EmbedContentResponse,
} from '@google/genai';
import { Config } from '../../config/config.js';
import { ContentGeneratorConfig } from '../contentGenerator.js';
import { type OpenAICompatibleProvider } from './provider/index.js';
import { Converter } from './converter.js';
import { OpenAIContentConverter } from './converter.js';
import { TelemetryService, RequestContext } from './telemetryService.js';
import { ErrorHandler } from './errorHandler.js';
import { StreamingManager } from './streamingManager.js';
export interface PipelineConfig {
cliConfig: Config;
@@ -31,15 +26,15 @@ export interface PipelineConfig {
export class ContentGenerationPipeline {
client: OpenAI;
private converter: Converter;
private streamingManager: StreamingManager;
private converter: OpenAIContentConverter;
private contentGeneratorConfig: ContentGeneratorConfig;
constructor(private config: PipelineConfig) {
this.contentGeneratorConfig = config.contentGeneratorConfig;
this.client = this.config.provider.buildClient();
this.converter = new Converter(this.contentGeneratorConfig.model);
this.streamingManager = new StreamingManager(this.converter);
this.converter = new OpenAIContentConverter(
this.contentGeneratorConfig.model,
);
}
async execute(
@@ -80,15 +75,14 @@ export class ContentGenerationPipeline {
userPromptId,
true,
async (openaiRequest, context) => {
// Stage 1: Create OpenAI stream
const stream = (await this.client.chat.completions.create(
openaiRequest,
)) as AsyncIterable<OpenAI.Chat.ChatCompletionChunk>;
const originalStream = this.streamingManager.processStream(stream);
// Create a logging stream decorator that handles collection and logging
return this.createLoggingStream(
originalStream,
// Stage 2: Process stream with conversion and logging
return this.processStreamWithLogging(
stream,
context,
openaiRequest,
request,
@@ -97,85 +91,68 @@ export class ContentGenerationPipeline {
);
}
async countTokens(
request: CountTokensParameters,
): Promise<CountTokensResponse> {
// Use tiktoken for accurate token counting
const content = JSON.stringify(request.contents);
let totalTokens = 0;
/**
* Stage 2: Process OpenAI stream with conversion and logging
* This method handles the complete stream processing pipeline:
* 1. Convert OpenAI chunks to Gemini format while preserving original chunks
* 2. Filter empty responses
* 3. Collect both formats for logging
* 4. Handle success/error logging with original OpenAI format
*/
private async *processStreamWithLogging(
stream: AsyncIterable<OpenAI.Chat.ChatCompletionChunk>,
context: RequestContext,
openaiRequest: OpenAI.Chat.ChatCompletionCreateParams,
request: GenerateContentParameters,
): AsyncGenerator<GenerateContentResponse> {
const collectedGeminiResponses: GenerateContentResponse[] = [];
const collectedOpenAIChunks: OpenAI.Chat.ChatCompletionChunk[] = [];
// Reset streaming tool calls to prevent data pollution from previous streams
this.converter.resetStreamingToolCalls();
try {
const { get_encoding } = await import('tiktoken');
const encoding = get_encoding('cl100k_base'); // GPT-4 encoding, but estimate for qwen
totalTokens = encoding.encode(content).length;
encoding.free();
// Stage 2a: Convert and yield each chunk while preserving original
for await (const chunk of stream) {
const response = this.converter.convertOpenAIChunkToGemini(chunk);
// Stage 2b: Filter empty responses to avoid downstream issues
if (
response.candidates?.[0]?.content?.parts?.length === 0 &&
!response.usageMetadata
) {
continue;
}
// Stage 2c: Collect both formats and yield Gemini format to consumer
collectedGeminiResponses.push(response);
collectedOpenAIChunks.push(chunk);
yield response;
}
// Stage 2d: Stream completed successfully - perform logging with original OpenAI chunks
context.duration = Date.now() - context.startTime;
await this.config.telemetryService.logStreamingSuccess(
context,
collectedGeminiResponses,
openaiRequest,
collectedOpenAIChunks,
);
} catch (error) {
console.warn(
'Failed to load tiktoken, falling back to character approximation:',
// Stage 2e: Stream failed - handle error and logging
context.duration = Date.now() - context.startTime;
// Clear streaming tool calls on error to prevent data pollution
this.converter.resetStreamingToolCalls();
await this.config.telemetryService.logError(
context,
error,
openaiRequest,
);
// Fallback: rough approximation using character count
totalTokens = Math.ceil(content.length / 4); // Rough estimate: 1 token ≈ 4 characters
}
return {
totalTokens,
};
}
async embedContent(
request: EmbedContentParameters,
): Promise<EmbedContentResponse> {
// Extract text from contents
let text = '';
if (Array.isArray(request.contents)) {
text = request.contents
.map((content) => {
if (typeof content === 'string') return content;
if ('parts' in content && content.parts) {
return content.parts
.map((part) =>
typeof part === 'string'
? part
: 'text' in part
? (part as { text?: string }).text || ''
: '',
)
.join(' ');
}
return '';
})
.join(' ');
} else if (request.contents) {
if (typeof request.contents === 'string') {
text = request.contents;
} else if ('parts' in request.contents && request.contents.parts) {
text = request.contents.parts
.map((part) =>
typeof part === 'string' ? part : 'text' in part ? part.text : '',
)
.join(' ');
}
}
try {
const embedding = await this.client.embeddings.create({
model: 'text-embedding-ada-002', // Default embedding model
input: text,
});
return {
embeddings: [
{
values: embedding.data[0].embedding,
},
],
};
} catch (error) {
console.error('OpenAI API Embedding Error:', error);
throw new Error(
`OpenAI API error: ${error instanceof Error ? error.message : String(error)}`,
);
this.config.errorHandler.handle(error, context, request);
}
}
@@ -267,55 +244,6 @@ export class ContentGenerationPipeline {
return params;
}
/**
* Creates a stream decorator that collects responses and handles logging
*/
private async *createLoggingStream(
originalStream: AsyncGenerator<GenerateContentResponse>,
context: RequestContext,
openaiRequest: OpenAI.Chat.ChatCompletionCreateParams,
request: GenerateContentParameters,
): AsyncGenerator<GenerateContentResponse> {
const responses: GenerateContentResponse[] = [];
try {
// Yield all responses while collecting them
for await (const response of originalStream) {
responses.push(response);
yield response;
}
// Stream completed successfully - perform logging
context.duration = Date.now() - context.startTime;
const combinedResponse =
this.streamingManager.combineStreamResponsesForLogging(
responses,
this.contentGeneratorConfig.model,
);
const openaiResponse =
this.converter.convertGeminiResponseToOpenAI(combinedResponse);
await this.config.telemetryService.logStreamingSuccess(
context,
responses,
openaiRequest,
openaiResponse,
);
} catch (error) {
// Stream failed - handle error and logging
context.duration = Date.now() - context.startTime;
await this.config.telemetryService.logError(
context,
error,
openaiRequest,
);
this.config.errorHandler.handle(error, context, request);
}
}
/**
* Common error handling wrapper for execute methods
*/

View File

@@ -0,0 +1,562 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import {
describe,
it,
expect,
vi,
beforeEach,
type MockedFunction,
} from 'vitest';
import OpenAI from 'openai';
import { DashScopeOpenAICompatibleProvider } from './dashscope.js';
import { Config } from '../../../config/config.js';
import { AuthType, ContentGeneratorConfig } from '../../contentGenerator.js';
import { DEFAULT_TIMEOUT, DEFAULT_MAX_RETRIES } from '../constants.js';
// Mock OpenAI
vi.mock('openai', () => ({
default: vi.fn().mockImplementation((config) => ({
config,
chat: {
completions: {
create: vi.fn(),
},
},
})),
}));
describe('DashScopeOpenAICompatibleProvider', () => {
let provider: DashScopeOpenAICompatibleProvider;
let mockContentGeneratorConfig: ContentGeneratorConfig;
let mockCliConfig: Config;
beforeEach(() => {
vi.clearAllMocks();
// Mock ContentGeneratorConfig
mockContentGeneratorConfig = {
apiKey: 'test-api-key',
baseUrl: 'https://dashscope.aliyuncs.com/compatible-mode/v1',
timeout: 60000,
maxRetries: 2,
model: 'qwen-max',
authType: AuthType.QWEN_OAUTH,
} as ContentGeneratorConfig;
// Mock Config
mockCliConfig = {
getCliVersion: vi.fn().mockReturnValue('1.0.0'),
getSessionId: vi.fn().mockReturnValue('test-session-id'),
getContentGeneratorConfig: vi.fn().mockReturnValue({
disableCacheControl: false,
}),
} as unknown as Config;
provider = new DashScopeOpenAICompatibleProvider(
mockContentGeneratorConfig,
mockCliConfig,
);
});
describe('constructor', () => {
it('should initialize with provided configs', () => {
expect(provider).toBeInstanceOf(DashScopeOpenAICompatibleProvider);
});
});
describe('isDashScopeProvider', () => {
it('should return true for QWEN_OAUTH auth type', () => {
const config = {
authType: AuthType.QWEN_OAUTH,
baseUrl: 'https://api.openai.com/v1',
} as ContentGeneratorConfig;
const result =
DashScopeOpenAICompatibleProvider.isDashScopeProvider(config);
expect(result).toBe(true);
});
it('should return true for DashScope domestic URL', () => {
const config = {
authType: AuthType.USE_OPENAI,
baseUrl: 'https://dashscope.aliyuncs.com/compatible-mode/v1',
} as ContentGeneratorConfig;
const result =
DashScopeOpenAICompatibleProvider.isDashScopeProvider(config);
expect(result).toBe(true);
});
it('should return true for DashScope international URL', () => {
const config = {
authType: AuthType.USE_OPENAI,
baseUrl: 'https://dashscope-intl.aliyuncs.com/compatible-mode/v1',
} as ContentGeneratorConfig;
const result =
DashScopeOpenAICompatibleProvider.isDashScopeProvider(config);
expect(result).toBe(true);
});
it('should return false for non-DashScope configurations', () => {
const configs = [
{
authType: AuthType.USE_OPENAI,
baseUrl: 'https://api.openai.com/v1',
},
{
authType: AuthType.USE_OPENAI,
baseUrl: 'https://api.anthropic.com/v1',
},
{
authType: AuthType.USE_OPENAI,
baseUrl: 'https://openrouter.ai/api/v1',
},
];
configs.forEach((config) => {
const result = DashScopeOpenAICompatibleProvider.isDashScopeProvider(
config as ContentGeneratorConfig,
);
expect(result).toBe(false);
});
});
});
describe('buildHeaders', () => {
it('should build DashScope-specific headers', () => {
const headers = provider.buildHeaders();
expect(headers).toEqual({
'User-Agent': `QwenCode/1.0.0 (${process.platform}; ${process.arch})`,
'X-DashScope-CacheControl': 'enable',
'X-DashScope-UserAgent': `QwenCode/1.0.0 (${process.platform}; ${process.arch})`,
'X-DashScope-AuthType': AuthType.QWEN_OAUTH,
});
});
it('should handle unknown CLI version', () => {
(
mockCliConfig.getCliVersion as MockedFunction<
typeof mockCliConfig.getCliVersion
>
).mockReturnValue(undefined);
const headers = provider.buildHeaders();
expect(headers['User-Agent']).toBe(
`QwenCode/unknown (${process.platform}; ${process.arch})`,
);
expect(headers['X-DashScope-UserAgent']).toBe(
`QwenCode/unknown (${process.platform}; ${process.arch})`,
);
});
});
describe('buildClient', () => {
it('should create OpenAI client with DashScope configuration', () => {
const client = provider.buildClient();
expect(OpenAI).toHaveBeenCalledWith({
apiKey: 'test-api-key',
baseURL: 'https://dashscope.aliyuncs.com/compatible-mode/v1',
timeout: 60000,
maxRetries: 2,
defaultHeaders: {
'User-Agent': `QwenCode/1.0.0 (${process.platform}; ${process.arch})`,
'X-DashScope-CacheControl': 'enable',
'X-DashScope-UserAgent': `QwenCode/1.0.0 (${process.platform}; ${process.arch})`,
'X-DashScope-AuthType': AuthType.QWEN_OAUTH,
},
});
expect(client).toBeDefined();
});
it('should use default timeout and maxRetries when not provided', () => {
mockContentGeneratorConfig.timeout = undefined;
mockContentGeneratorConfig.maxRetries = undefined;
provider.buildClient();
expect(OpenAI).toHaveBeenCalledWith({
apiKey: 'test-api-key',
baseURL: 'https://dashscope.aliyuncs.com/compatible-mode/v1',
timeout: DEFAULT_TIMEOUT,
maxRetries: DEFAULT_MAX_RETRIES,
defaultHeaders: expect.any(Object),
});
});
});
describe('buildMetadata', () => {
it('should build metadata with session and prompt IDs', () => {
const userPromptId = 'test-prompt-id';
const metadata = provider.buildMetadata(userPromptId);
expect(metadata).toEqual({
metadata: {
sessionId: 'test-session-id',
promptId: 'test-prompt-id',
},
});
});
it('should handle missing session ID', () => {
// Mock the method to not exist (simulate optional chaining returning undefined)
delete (mockCliConfig as unknown as Record<string, unknown>)[
'getSessionId'
];
const userPromptId = 'test-prompt-id';
const metadata = provider.buildMetadata(userPromptId);
expect(metadata).toEqual({
metadata: {
sessionId: undefined,
promptId: 'test-prompt-id',
},
});
});
});
describe('buildRequest', () => {
const baseRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'qwen-max',
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'Hello!' },
],
temperature: 0.7,
};
it('should add cache control to system message only for non-streaming requests', () => {
const request = { ...baseRequest, stream: false };
const result = provider.buildRequest(request, 'test-prompt-id');
expect(result.messages).toHaveLength(2);
// System message should have cache control
const systemMessage = result.messages[0];
expect(systemMessage.role).toBe('system');
expect(systemMessage.content).toEqual([
{
type: 'text',
text: 'You are a helpful assistant.',
cache_control: { type: 'ephemeral' },
},
]);
// Last message should NOT have cache control for non-streaming
const lastMessage = result.messages[1];
expect(lastMessage.role).toBe('user');
expect(lastMessage.content).toBe('Hello!');
});
it('should add cache control to both system and last messages for streaming requests', () => {
const request = { ...baseRequest, stream: true };
const result = provider.buildRequest(request, 'test-prompt-id');
expect(result.messages).toHaveLength(2);
// System message should have cache control
const systemMessage = result.messages[0];
expect(systemMessage.content).toEqual([
{
type: 'text',
text: 'You are a helpful assistant.',
cache_control: { type: 'ephemeral' },
},
]);
// Last message should also have cache control for streaming
const lastMessage = result.messages[1];
expect(lastMessage.content).toEqual([
{
type: 'text',
text: 'Hello!',
cache_control: { type: 'ephemeral' },
},
]);
});
it('should include metadata in the request', () => {
const result = provider.buildRequest(baseRequest, 'test-prompt-id');
expect(result.metadata).toEqual({
sessionId: 'test-session-id',
promptId: 'test-prompt-id',
});
});
it('should preserve all original request parameters', () => {
const complexRequest: OpenAI.Chat.ChatCompletionCreateParams = {
...baseRequest,
temperature: 0.8,
max_tokens: 1000,
top_p: 0.9,
frequency_penalty: 0.1,
presence_penalty: 0.2,
stop: ['END'],
user: 'test-user',
};
const result = provider.buildRequest(complexRequest, 'test-prompt-id');
expect(result.model).toBe('qwen-max');
expect(result.temperature).toBe(0.8);
expect(result.max_tokens).toBe(1000);
expect(result.top_p).toBe(0.9);
expect(result.frequency_penalty).toBe(0.1);
expect(result.presence_penalty).toBe(0.2);
expect(result.stop).toEqual(['END']);
expect(result.user).toBe('test-user');
});
it('should skip cache control when disabled', () => {
(
mockCliConfig.getContentGeneratorConfig as MockedFunction<
typeof mockCliConfig.getContentGeneratorConfig
>
).mockReturnValue({
model: 'qwen-max',
disableCacheControl: true,
});
const result = provider.buildRequest(baseRequest, 'test-prompt-id');
// Messages should remain as strings (not converted to array format)
expect(result.messages[0].content).toBe('You are a helpful assistant.');
expect(result.messages[1].content).toBe('Hello!');
});
it('should handle messages with array content for streaming requests', () => {
const requestWithArrayContent: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'qwen-max',
stream: true, // This will trigger cache control on last message
messages: [
{
role: 'user',
content: [
{ type: 'text', text: 'Hello' },
{ type: 'text', text: 'World' },
],
},
],
};
const result = provider.buildRequest(
requestWithArrayContent,
'test-prompt-id',
);
const message = result.messages[0];
expect(Array.isArray(message.content)).toBe(true);
const content =
message.content as OpenAI.Chat.ChatCompletionContentPart[];
expect(content).toHaveLength(2);
expect(content[1]).toEqual({
type: 'text',
text: 'World',
cache_control: { type: 'ephemeral' },
});
});
it('should handle empty messages array', () => {
const emptyRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'qwen-max',
messages: [],
};
const result = provider.buildRequest(emptyRequest, 'test-prompt-id');
expect(result.messages).toEqual([]);
expect(result.metadata).toBeDefined();
});
it('should handle messages without content for streaming requests', () => {
const requestWithoutContent: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'qwen-max',
stream: true, // This will trigger cache control on last message
messages: [
{ role: 'assistant', content: null },
{ role: 'user', content: 'Hello' },
],
};
const result = provider.buildRequest(
requestWithoutContent,
'test-prompt-id',
);
// First message should remain unchanged
expect(result.messages[0].content).toBeNull();
// Second message should have cache control (it's the last message in streaming)
expect(result.messages[1].content).toEqual([
{
type: 'text',
text: 'Hello',
cache_control: { type: 'ephemeral' },
},
]);
});
it('should add cache control to last text item in mixed content for streaming requests', () => {
const requestWithMixedContent: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'qwen-max',
stream: true, // This will trigger cache control on last message
messages: [
{
role: 'user',
content: [
{ type: 'text', text: 'Look at this image:' },
{
type: 'image_url',
image_url: { url: 'https://example.com/image.jpg' },
},
{ type: 'text', text: 'What do you see?' },
],
},
],
};
const result = provider.buildRequest(
requestWithMixedContent,
'test-prompt-id',
);
const content = result.messages[0]
.content as OpenAI.Chat.ChatCompletionContentPart[];
expect(content).toHaveLength(3);
// Last text item should have cache control
expect(content[2]).toEqual({
type: 'text',
text: 'What do you see?',
cache_control: { type: 'ephemeral' },
});
// Image item should remain unchanged
expect(content[1]).toEqual({
type: 'image_url',
image_url: { url: 'https://example.com/image.jpg' },
});
});
it('should add empty text item with cache control if last item is not text for streaming requests', () => {
const requestWithNonTextLast: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'qwen-max',
stream: true, // This will trigger cache control on last message
messages: [
{
role: 'user',
content: [
{ type: 'text', text: 'Look at this:' },
{
type: 'image_url',
image_url: { url: 'https://example.com/image.jpg' },
},
],
},
],
};
const result = provider.buildRequest(
requestWithNonTextLast,
'test-prompt-id',
);
const content = result.messages[0]
.content as OpenAI.Chat.ChatCompletionContentPart[];
expect(content).toHaveLength(3);
// Should add empty text item with cache control
expect(content[2]).toEqual({
type: 'text',
text: '',
cache_control: { type: 'ephemeral' },
});
});
});
describe('cache control edge cases', () => {
it('should handle request with only system message', () => {
const systemOnlyRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'qwen-max',
messages: [{ role: 'system', content: 'System prompt' }],
};
const result = provider.buildRequest(systemOnlyRequest, 'test-prompt-id');
expect(result.messages).toHaveLength(1);
expect(result.messages[0].content).toEqual([
{
type: 'text',
text: 'System prompt',
cache_control: { type: 'ephemeral' },
},
]);
});
it('should handle request without system message for streaming requests', () => {
const noSystemRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'qwen-max',
stream: true, // This will trigger cache control on last message
messages: [
{ role: 'user', content: 'First message' },
{ role: 'assistant', content: 'Response' },
{ role: 'user', content: 'Second message' },
],
};
const result = provider.buildRequest(noSystemRequest, 'test-prompt-id');
expect(result.messages).toHaveLength(3);
// Only last message should have cache control (no system message to modify)
expect(result.messages[0].content).toBe('First message');
expect(result.messages[1].content).toBe('Response');
expect(result.messages[2].content).toEqual([
{
type: 'text',
text: 'Second message',
cache_control: { type: 'ephemeral' },
},
]);
});
it('should handle empty content array for streaming requests', () => {
const emptyContentRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'qwen-max',
stream: true, // This will trigger cache control on last message
messages: [
{
role: 'user',
content: [],
},
],
};
const result = provider.buildRequest(
emptyContentRequest,
'test-prompt-id',
);
const content = result.messages[0]
.content as OpenAI.Chat.ChatCompletionContentPart[];
expect(content).toEqual([
{
type: 'text',
text: '',
cache_control: { type: 'ephemeral' },
},
]);
});
});
});

View File

@@ -131,44 +131,92 @@ export class DashScopeOpenAICompatibleProvider
target: 'system' | 'last',
): OpenAI.Chat.ChatCompletionMessageParam[] {
const updatedMessages = [...messages];
let messageIndex: number;
const messageIndex = this.findTargetMessageIndex(messages, target);
if (target === 'system') {
// Find the first system message
messageIndex = messages.findIndex((msg) => msg.role === 'system');
if (messageIndex === -1) {
return updatedMessages;
}
} else {
// Get the last message
messageIndex = messages.length - 1;
}
const message = updatedMessages[messageIndex];
// Only process messages that have content
if ('content' in message && message.content !== null) {
if (typeof message.content === 'string') {
// Convert string content to array format with cache control
const messageWithArrayContent = {
if (
'content' in message &&
message.content !== null &&
message.content !== undefined
) {
const updatedContent = this.addCacheControlToContent(message.content);
updatedMessages[messageIndex] = {
...message,
content: [
content: updatedContent,
} as OpenAI.Chat.ChatCompletionMessageParam;
}
return updatedMessages;
}
/**
* Find the index of the target message (system or last)
*/
private findTargetMessageIndex(
messages: OpenAI.Chat.ChatCompletionMessageParam[],
target: 'system' | 'last',
): number {
if (target === 'system') {
return messages.findIndex((msg) => msg.role === 'system');
} else {
return messages.length - 1;
}
}
/**
* Add cache control to message content, handling both string and array formats
*/
private addCacheControlToContent(
content: NonNullable<OpenAI.Chat.ChatCompletionMessageParam['content']>,
): ChatCompletionContentPartWithCache[] {
// Convert content to array format if it's a string
const contentArray = this.normalizeContentToArray(content);
// Add cache control to the last text item or create one if needed
return this.addCacheControlToContentArray(contentArray);
}
/**
* Normalize content to array format
*/
private normalizeContentToArray(
content: NonNullable<OpenAI.Chat.ChatCompletionMessageParam['content']>,
): ChatCompletionContentPartWithCache[] {
if (typeof content === 'string') {
return [
{
type: 'text',
text: message.content,
text: content,
} as ChatCompletionContentPartTextWithCache,
];
}
return [...content] as ChatCompletionContentPartWithCache[];
}
/**
* Add cache control to the content array
*/
private addCacheControlToContentArray(
contentArray: ChatCompletionContentPartWithCache[],
): ChatCompletionContentPartWithCache[] {
if (contentArray.length === 0) {
return [
{
type: 'text',
text: '',
cache_control: { type: 'ephemeral' },
} as ChatCompletionContentPartTextWithCache,
],
};
updatedMessages[messageIndex] =
messageWithArrayContent as OpenAI.Chat.ChatCompletionMessageParam;
} else if (Array.isArray(message.content)) {
// If content is already an array, add cache_control to the last item
const contentArray = [
...message.content,
] as ChatCompletionContentPartWithCache[];
if (contentArray.length > 0) {
];
}
const lastItem = contentArray[contentArray.length - 1];
if (lastItem.type === 'text') {
// Add cache_control to the last text item
contentArray[contentArray.length - 1] = {
@@ -184,17 +232,7 @@ export class DashScopeOpenAICompatibleProvider
} as ChatCompletionContentPartTextWithCache);
}
const messageWithCache = {
...message,
content: contentArray,
};
updatedMessages[messageIndex] =
messageWithCache as OpenAI.Chat.ChatCompletionMessageParam;
}
}
}
return updatedMessages;
return contentArray;
}
/**

View File

@@ -0,0 +1,229 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import {
describe,
it,
expect,
vi,
beforeEach,
type MockedFunction,
} from 'vitest';
import OpenAI from 'openai';
import { DefaultOpenAICompatibleProvider } from './default.js';
import { Config } from '../../../config/config.js';
import { ContentGeneratorConfig } from '../../contentGenerator.js';
import { DEFAULT_TIMEOUT, DEFAULT_MAX_RETRIES } from '../constants.js';
// Mock OpenAI
vi.mock('openai', () => ({
default: vi.fn().mockImplementation((config) => ({
config,
chat: {
completions: {
create: vi.fn(),
},
},
})),
}));
describe('DefaultOpenAICompatibleProvider', () => {
let provider: DefaultOpenAICompatibleProvider;
let mockContentGeneratorConfig: ContentGeneratorConfig;
let mockCliConfig: Config;
beforeEach(() => {
vi.clearAllMocks();
// Mock ContentGeneratorConfig
mockContentGeneratorConfig = {
apiKey: 'test-api-key',
baseUrl: 'https://api.openai.com/v1',
timeout: 60000,
maxRetries: 2,
model: 'gpt-4',
} as ContentGeneratorConfig;
// Mock Config
mockCliConfig = {
getCliVersion: vi.fn().mockReturnValue('1.0.0'),
} as unknown as Config;
provider = new DefaultOpenAICompatibleProvider(
mockContentGeneratorConfig,
mockCliConfig,
);
});
describe('constructor', () => {
it('should initialize with provided configs', () => {
expect(provider).toBeInstanceOf(DefaultOpenAICompatibleProvider);
});
});
describe('buildHeaders', () => {
it('should build headers with User-Agent', () => {
const headers = provider.buildHeaders();
expect(headers).toEqual({
'User-Agent': `QwenCode/1.0.0 (${process.platform}; ${process.arch})`,
});
});
it('should handle unknown CLI version', () => {
(
mockCliConfig.getCliVersion as MockedFunction<
typeof mockCliConfig.getCliVersion
>
).mockReturnValue(undefined);
const headers = provider.buildHeaders();
expect(headers).toEqual({
'User-Agent': `QwenCode/unknown (${process.platform}; ${process.arch})`,
});
});
});
describe('buildClient', () => {
it('should create OpenAI client with correct configuration', () => {
const client = provider.buildClient();
expect(OpenAI).toHaveBeenCalledWith({
apiKey: 'test-api-key',
baseURL: 'https://api.openai.com/v1',
timeout: 60000,
maxRetries: 2,
defaultHeaders: {
'User-Agent': `QwenCode/1.0.0 (${process.platform}; ${process.arch})`,
},
});
expect(client).toBeDefined();
});
it('should use default timeout and maxRetries when not provided', () => {
mockContentGeneratorConfig.timeout = undefined;
mockContentGeneratorConfig.maxRetries = undefined;
provider.buildClient();
expect(OpenAI).toHaveBeenCalledWith({
apiKey: 'test-api-key',
baseURL: 'https://api.openai.com/v1',
timeout: DEFAULT_TIMEOUT,
maxRetries: DEFAULT_MAX_RETRIES,
defaultHeaders: {
'User-Agent': `QwenCode/1.0.0 (${process.platform}; ${process.arch})`,
},
});
});
it('should include custom headers from buildHeaders', () => {
provider.buildClient();
const expectedHeaders = provider.buildHeaders();
expect(OpenAI).toHaveBeenCalledWith(
expect.objectContaining({
defaultHeaders: expectedHeaders,
}),
);
});
});
describe('buildRequest', () => {
it('should pass through all request parameters unchanged', () => {
const originalRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'gpt-4',
messages: [
{ role: 'system', content: 'You are a helpful assistant.' },
{ role: 'user', content: 'Hello!' },
],
temperature: 0.7,
max_tokens: 1000,
top_p: 0.9,
frequency_penalty: 0.1,
presence_penalty: 0.2,
stream: false,
};
const userPromptId = 'test-prompt-id';
const result = provider.buildRequest(originalRequest, userPromptId);
expect(result).toEqual(originalRequest);
expect(result).not.toBe(originalRequest); // Should be a new object
});
it('should preserve all sampling parameters', () => {
const originalRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'gpt-3.5-turbo',
messages: [{ role: 'user', content: 'Test message' }],
temperature: 0.5,
max_tokens: 500,
top_p: 0.8,
frequency_penalty: 0.3,
presence_penalty: 0.4,
stop: ['END'],
logit_bias: { '123': 10 },
user: 'test-user',
seed: 42,
};
const result = provider.buildRequest(originalRequest, 'prompt-id');
expect(result).toEqual(originalRequest);
expect(result.temperature).toBe(0.5);
expect(result.max_tokens).toBe(500);
expect(result.top_p).toBe(0.8);
expect(result.frequency_penalty).toBe(0.3);
expect(result.presence_penalty).toBe(0.4);
expect(result.stop).toEqual(['END']);
expect(result.logit_bias).toEqual({ '123': 10 });
expect(result.user).toBe('test-user');
expect(result.seed).toBe(42);
});
it('should handle minimal request parameters', () => {
const minimalRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'gpt-4',
messages: [{ role: 'user', content: 'Hello' }],
};
const result = provider.buildRequest(minimalRequest, 'prompt-id');
expect(result).toEqual(minimalRequest);
});
it('should handle streaming requests', () => {
const streamingRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'gpt-4',
messages: [{ role: 'user', content: 'Hello' }],
stream: true,
};
const result = provider.buildRequest(streamingRequest, 'prompt-id');
expect(result).toEqual(streamingRequest);
expect(result.stream).toBe(true);
});
it('should not modify the original request object', () => {
const originalRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'gpt-4',
messages: [{ role: 'user', content: 'Hello' }],
temperature: 0.7,
};
const originalRequestCopy = { ...originalRequest };
const result = provider.buildRequest(originalRequest, 'prompt-id');
// Original request should be unchanged
expect(originalRequest).toEqual(originalRequestCopy);
// Result should be a different object
expect(result).not.toBe(originalRequest);
});
});
});

View File

@@ -10,8 +10,8 @@ import { OpenAICompatibleProvider } from './types.js';
export class DefaultOpenAICompatibleProvider
implements OpenAICompatibleProvider
{
private contentGeneratorConfig: ContentGeneratorConfig;
private cliConfig: Config;
protected contentGeneratorConfig: ContentGeneratorConfig;
protected cliConfig: Config;
constructor(
contentGeneratorConfig: ContentGeneratorConfig,

View File

@@ -0,0 +1,221 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { describe, it, expect, vi, beforeEach } from 'vitest';
import OpenAI from 'openai';
import { OpenRouterOpenAICompatibleProvider } from './openrouter.js';
import { DefaultOpenAICompatibleProvider } from './default.js';
import { Config } from '../../../config/config.js';
import { ContentGeneratorConfig } from '../../contentGenerator.js';
describe('OpenRouterOpenAICompatibleProvider', () => {
let provider: OpenRouterOpenAICompatibleProvider;
let mockContentGeneratorConfig: ContentGeneratorConfig;
let mockCliConfig: Config;
beforeEach(() => {
vi.clearAllMocks();
// Mock ContentGeneratorConfig
mockContentGeneratorConfig = {
apiKey: 'test-api-key',
baseUrl: 'https://openrouter.ai/api/v1',
timeout: 60000,
maxRetries: 2,
model: 'openai/gpt-4',
} as ContentGeneratorConfig;
// Mock Config
mockCliConfig = {
getCliVersion: vi.fn().mockReturnValue('1.0.0'),
} as unknown as Config;
provider = new OpenRouterOpenAICompatibleProvider(
mockContentGeneratorConfig,
mockCliConfig,
);
});
describe('constructor', () => {
it('should extend DefaultOpenAICompatibleProvider', () => {
expect(provider).toBeInstanceOf(DefaultOpenAICompatibleProvider);
expect(provider).toBeInstanceOf(OpenRouterOpenAICompatibleProvider);
});
});
describe('isOpenRouterProvider', () => {
it('should return true for openrouter.ai URLs', () => {
const configs = [
{ baseUrl: 'https://openrouter.ai/api/v1' },
{ baseUrl: 'https://api.openrouter.ai/v1' },
{ baseUrl: 'https://openrouter.ai' },
{ baseUrl: 'http://openrouter.ai/api/v1' },
];
configs.forEach((config) => {
const result = OpenRouterOpenAICompatibleProvider.isOpenRouterProvider(
config as ContentGeneratorConfig,
);
expect(result).toBe(true);
});
});
it('should return false for non-openrouter URLs', () => {
const configs = [
{ baseUrl: 'https://api.openai.com/v1' },
{ baseUrl: 'https://api.anthropic.com/v1' },
{ baseUrl: 'https://dashscope.aliyuncs.com/compatible-mode/v1' },
{ baseUrl: 'https://example.com/api/v1' }, // different domain
{ baseUrl: '' },
{ baseUrl: undefined },
];
configs.forEach((config) => {
const result = OpenRouterOpenAICompatibleProvider.isOpenRouterProvider(
config as ContentGeneratorConfig,
);
expect(result).toBe(false);
});
});
it('should handle missing baseUrl gracefully', () => {
const config = {} as ContentGeneratorConfig;
const result =
OpenRouterOpenAICompatibleProvider.isOpenRouterProvider(config);
expect(result).toBe(false);
});
});
describe('buildHeaders', () => {
it('should include base headers from parent class', () => {
const headers = provider.buildHeaders();
// Should include User-Agent from parent
expect(headers['User-Agent']).toBe(
`QwenCode/1.0.0 (${process.platform}; ${process.arch})`,
);
});
it('should add OpenRouter-specific headers', () => {
const headers = provider.buildHeaders();
expect(headers).toEqual({
'User-Agent': `QwenCode/1.0.0 (${process.platform}; ${process.arch})`,
'HTTP-Referer': 'https://github.com/QwenLM/qwen-code.git',
'X-Title': 'Qwen Code',
});
});
it('should override parent headers if there are conflicts', () => {
// Mock parent to return conflicting headers
const parentBuildHeaders = vi.spyOn(
DefaultOpenAICompatibleProvider.prototype,
'buildHeaders',
);
parentBuildHeaders.mockReturnValue({
'User-Agent': 'ParentAgent/1.0.0',
'HTTP-Referer': 'https://parent.com',
});
const headers = provider.buildHeaders();
expect(headers).toEqual({
'User-Agent': 'ParentAgent/1.0.0',
'HTTP-Referer': 'https://github.com/QwenLM/qwen-code.git', // OpenRouter-specific value should override
'X-Title': 'Qwen Code',
});
parentBuildHeaders.mockRestore();
});
it('should handle unknown CLI version from parent', () => {
vi.mocked(mockCliConfig.getCliVersion).mockReturnValue(undefined);
const headers = provider.buildHeaders();
expect(headers['User-Agent']).toBe(
`QwenCode/unknown (${process.platform}; ${process.arch})`,
);
expect(headers['HTTP-Referer']).toBe(
'https://github.com/QwenLM/qwen-code.git',
);
expect(headers['X-Title']).toBe('Qwen Code');
});
});
describe('buildClient', () => {
it('should inherit buildClient behavior from parent', () => {
// Mock the parent's buildClient method
const mockClient = { test: 'client' };
const parentBuildClient = vi.spyOn(
DefaultOpenAICompatibleProvider.prototype,
'buildClient',
);
parentBuildClient.mockReturnValue(mockClient as unknown as OpenAI);
const result = provider.buildClient();
expect(parentBuildClient).toHaveBeenCalled();
expect(result).toBe(mockClient);
parentBuildClient.mockRestore();
});
});
describe('buildRequest', () => {
it('should inherit buildRequest behavior from parent', () => {
const mockRequest: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'openai/gpt-4',
messages: [{ role: 'user', content: 'Hello' }],
};
const mockUserPromptId = 'test-prompt-id';
const mockResult = { ...mockRequest, modified: true };
// Mock the parent's buildRequest method
const parentBuildRequest = vi.spyOn(
DefaultOpenAICompatibleProvider.prototype,
'buildRequest',
);
parentBuildRequest.mockReturnValue(mockResult);
const result = provider.buildRequest(mockRequest, mockUserPromptId);
expect(parentBuildRequest).toHaveBeenCalledWith(
mockRequest,
mockUserPromptId,
);
expect(result).toBe(mockResult);
parentBuildRequest.mockRestore();
});
});
describe('integration with parent class', () => {
it('should properly call parent constructor', () => {
const newProvider = new OpenRouterOpenAICompatibleProvider(
mockContentGeneratorConfig,
mockCliConfig,
);
// Verify that parent properties are accessible
expect(newProvider).toHaveProperty('buildHeaders');
expect(newProvider).toHaveProperty('buildClient');
expect(newProvider).toHaveProperty('buildRequest');
});
it('should maintain parent functionality while adding OpenRouter specifics', () => {
// Test that the provider can perform all parent operations
const headers = provider.buildHeaders();
// Should have both parent and OpenRouter-specific headers
expect(headers['User-Agent']).toBeDefined(); // From parent
expect(headers['HTTP-Referer']).toBe(
'https://github.com/QwenLM/qwen-code.git',
); // OpenRouter-specific
expect(headers['X-Title']).toBe('Qwen Code'); // OpenRouter-specific
});
});
});

View File

@@ -1,21 +1,13 @@
import OpenAI from 'openai';
import { Config } from '../../../config/config.js';
import { ContentGeneratorConfig } from '../../contentGenerator.js';
import { DEFAULT_TIMEOUT, DEFAULT_MAX_RETRIES } from '../constants.js';
import { OpenAICompatibleProvider } from './types.js';
export class OpenRouterOpenAICompatibleProvider
implements OpenAICompatibleProvider
{
private contentGeneratorConfig: ContentGeneratorConfig;
private cliConfig: Config;
import { DefaultOpenAICompatibleProvider } from './default.js';
export class OpenRouterOpenAICompatibleProvider extends DefaultOpenAICompatibleProvider {
constructor(
contentGeneratorConfig: ContentGeneratorConfig,
cliConfig: Config,
) {
this.cliConfig = cliConfig;
this.contentGeneratorConfig = contentGeneratorConfig;
super(contentGeneratorConfig, cliConfig);
}
static isOpenRouterProvider(
@@ -25,40 +17,15 @@ export class OpenRouterOpenAICompatibleProvider
return baseURL.includes('openrouter.ai');
}
buildHeaders(): Record<string, string | undefined> {
const version = this.cliConfig.getCliVersion() || 'unknown';
const userAgent = `QwenCode/${version} (${process.platform}; ${process.arch})`;
override buildHeaders(): Record<string, string | undefined> {
// Get base headers from parent class
const baseHeaders = super.buildHeaders();
// Add OpenRouter-specific headers
return {
'User-Agent': userAgent,
...baseHeaders,
'HTTP-Referer': 'https://github.com/QwenLM/qwen-code.git',
'X-Title': 'Qwen Code',
};
}
buildClient(): OpenAI {
const {
apiKey,
baseUrl,
timeout = DEFAULT_TIMEOUT,
maxRetries = DEFAULT_MAX_RETRIES,
} = this.contentGeneratorConfig;
const defaultHeaders = this.buildHeaders();
return new OpenAI({
apiKey,
baseURL: baseUrl,
timeout,
maxRetries,
defaultHeaders,
});
}
buildRequest(
request: OpenAI.Chat.ChatCompletionCreateParams,
_userPromptId: string,
): OpenAI.Chat.ChatCompletionCreateParams {
// OpenRouter doesn't need special enhancements, just pass through all parameters
return {
...request, // Preserve all original parameters including sampling params
};
}
}

View File

@@ -1,111 +0,0 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import OpenAI from 'openai';
import { GenerateContentResponse, Part, FinishReason } from '@google/genai';
import { Converter } from './converter.js';
export interface ToolCallAccumulator {
id?: string;
name?: string;
arguments: string;
}
export class StreamingManager {
private toolCallAccumulator = new Map<number, ToolCallAccumulator>();
constructor(private converter: Converter) {}
async *processStream(
stream: AsyncIterable<OpenAI.Chat.ChatCompletionChunk>,
): AsyncGenerator<GenerateContentResponse> {
// Reset the accumulator for each new stream
this.toolCallAccumulator.clear();
for await (const chunk of stream) {
const response = this.converter.convertOpenAIChunkToGemini(chunk);
// Ignore empty responses, which would cause problems with downstream code
// that expects a valid response.
if (
response.candidates?.[0]?.content?.parts?.length === 0 &&
!response.usageMetadata
) {
continue;
}
yield response;
}
}
/**
* Combine streaming responses for logging purposes
*/
combineStreamResponsesForLogging(
responses: GenerateContentResponse[],
model: string,
): GenerateContentResponse {
if (responses.length === 0) {
return new GenerateContentResponse();
}
const lastResponse = responses[responses.length - 1];
// Find the last response with usage metadata
const finalUsageMetadata = responses
.slice()
.reverse()
.find((r) => r.usageMetadata)?.usageMetadata;
// Combine all text content from the stream
const combinedParts: Part[] = [];
let combinedText = '';
const functionCalls: Part[] = [];
for (const response of responses) {
if (response.candidates?.[0]?.content?.parts) {
for (const part of response.candidates[0].content.parts) {
if ('text' in part && part.text) {
combinedText += part.text;
} else if ('functionCall' in part && part.functionCall) {
functionCalls.push(part);
}
}
}
}
// Add combined text if any
if (combinedText) {
combinedParts.push({ text: combinedText });
}
// Add function calls
combinedParts.push(...functionCalls);
// Create combined response
const combinedResponse = new GenerateContentResponse();
combinedResponse.candidates = [
{
content: {
parts: combinedParts,
role: 'model' as const,
},
finishReason:
responses[responses.length - 1]?.candidates?.[0]?.finishReason ||
FinishReason.FINISH_REASON_UNSPECIFIED,
index: 0,
safetyRatings: [],
},
];
combinedResponse.responseId = lastResponse?.responseId;
combinedResponse.createTime = lastResponse?.createTime;
combinedResponse.modelVersion = model;
combinedResponse.promptFeedback = { safetyRatings: [] };
combinedResponse.usageMetadata = finalUsageMetadata;
return combinedResponse;
}
}

View File

@@ -0,0 +1,570 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { describe, it, expect, beforeEach } from 'vitest';
import {
StreamingToolCallParser,
ToolCallParseResult,
} from './streamingToolCallParser.js';
describe('StreamingToolCallParser', () => {
let parser: StreamingToolCallParser;
beforeEach(() => {
parser = new StreamingToolCallParser();
});
describe('Basic functionality', () => {
it('should initialize with empty state', () => {
expect(parser.getBuffer(0)).toBe('');
expect(parser.getState(0)).toEqual({
depth: 0,
inString: false,
escape: false,
});
expect(parser.getToolCallMeta(0)).toEqual({});
});
it('should handle simple complete JSON in single chunk', () => {
const result = parser.addChunk(
0,
'{"key": "value"}',
'call_1',
'test_function',
);
expect(result.complete).toBe(true);
expect(result.value).toEqual({ key: 'value' });
expect(result.error).toBeUndefined();
expect(result.repaired).toBeUndefined();
});
it('should accumulate chunks until complete JSON', () => {
let result = parser.addChunk(0, '{"key":', 'call_1', 'test_function');
expect(result.complete).toBe(false);
result = parser.addChunk(0, ' "val');
expect(result.complete).toBe(false);
result = parser.addChunk(0, 'ue"}');
expect(result.complete).toBe(true);
expect(result.value).toEqual({ key: 'value' });
});
it('should handle empty chunks gracefully', () => {
const result = parser.addChunk(0, '', 'call_1', 'test_function');
expect(result.complete).toBe(false);
expect(parser.getBuffer(0)).toBe('');
});
});
describe('JSON depth tracking', () => {
it('should track nested objects correctly', () => {
let result = parser.addChunk(
0,
'{"outer": {"inner":',
'call_1',
'test_function',
);
expect(result.complete).toBe(false);
expect(parser.getState(0).depth).toBe(2);
result = parser.addChunk(0, ' "value"}}');
expect(result.complete).toBe(true);
expect(result.value).toEqual({ outer: { inner: 'value' } });
});
it('should track nested arrays correctly', () => {
let result = parser.addChunk(
0,
'{"arr": [1, [2,',
'call_1',
'test_function',
);
expect(result.complete).toBe(false);
// Depth: { (1) + [ (2) + [ (3) = 3
expect(parser.getState(0).depth).toBe(3);
result = parser.addChunk(0, ' 3]]}');
expect(result.complete).toBe(true);
expect(result.value).toEqual({ arr: [1, [2, 3]] });
});
it('should handle mixed nested structures', () => {
let result = parser.addChunk(
0,
'{"obj": {"arr": [{"nested":',
'call_1',
'test_function',
);
expect(result.complete).toBe(false);
// Depth: { (1) + { (2) + [ (3) + { (4) = 4
expect(parser.getState(0).depth).toBe(4);
result = parser.addChunk(0, ' true}]}}');
expect(result.complete).toBe(true);
expect(result.value).toEqual({ obj: { arr: [{ nested: true }] } });
});
});
describe('String handling', () => {
it('should handle strings with special characters', () => {
const result = parser.addChunk(
0,
'{"text": "Hello, \\"World\\"!"}',
'call_1',
'test_function',
);
expect(result.complete).toBe(true);
expect(result.value).toEqual({ text: 'Hello, "World"!' });
});
it('should handle strings with braces and brackets', () => {
const result = parser.addChunk(
0,
'{"code": "if (x) { return [1, 2]; }"}',
'call_1',
'test_function',
);
expect(result.complete).toBe(true);
expect(result.value).toEqual({ code: 'if (x) { return [1, 2]; }' });
});
it('should track string boundaries correctly across chunks', () => {
let result = parser.addChunk(
0,
'{"text": "Hello',
'call_1',
'test_function',
);
expect(result.complete).toBe(false);
expect(parser.getState(0).inString).toBe(true);
result = parser.addChunk(0, ' World"}');
expect(result.complete).toBe(true);
expect(result.value).toEqual({ text: 'Hello World' });
});
it('should handle escaped quotes in strings', () => {
let result = parser.addChunk(
0,
'{"text": "Say \\"Hello',
'call_1',
'test_function',
);
expect(result.complete).toBe(false);
expect(parser.getState(0).inString).toBe(true);
result = parser.addChunk(0, '\\" to me"}');
expect(result.complete).toBe(true);
expect(result.value).toEqual({ text: 'Say "Hello" to me' });
});
it('should handle backslash escapes correctly', () => {
const result = parser.addChunk(
0,
'{"path": "C:\\\\Users\\\\test"}',
'call_1',
'test_function',
);
expect(result.complete).toBe(true);
expect(result.value).toEqual({ path: 'C:\\Users\\test' });
});
});
describe('Error handling and repair', () => {
it('should return error for malformed JSON at depth 0', () => {
const result = parser.addChunk(
0,
'{"key": invalid}',
'call_1',
'test_function',
);
expect(result.complete).toBe(false);
expect(result.error).toBeInstanceOf(Error);
});
it('should auto-repair unclosed strings', () => {
// Test the repair functionality in getCompletedToolCalls instead
// since that's where repair is actually used in practice
parser.addChunk(0, '{"text": "unclosed', 'call_1', 'test_function');
const completed = parser.getCompletedToolCalls();
expect(completed).toHaveLength(1);
expect(completed[0].args).toEqual({ text: 'unclosed' });
});
it('should not attempt repair when still in nested structure', () => {
const result = parser.addChunk(
0,
'{"obj": {"text": "unclosed',
'call_1',
'test_function',
);
expect(result.complete).toBe(false);
expect(result.repaired).toBeUndefined();
});
it('should handle repair failure gracefully', () => {
// Create a case where even repair fails - malformed JSON at depth 0
const result = parser.addChunk(
0,
'invalid json',
'call_1',
'test_function',
);
expect(result.complete).toBe(false);
expect(result.error).toBeInstanceOf(Error);
});
});
describe('Multiple tool calls', () => {
it('should handle multiple tool calls with different indices', () => {
const result1 = parser.addChunk(
0,
'{"param1": "value1"}',
'call_1',
'function1',
);
const result2 = parser.addChunk(
1,
'{"param2": "value2"}',
'call_2',
'function2',
);
expect(result1.complete).toBe(true);
expect(result1.value).toEqual({ param1: 'value1' });
expect(result2.complete).toBe(true);
expect(result2.value).toEqual({ param2: 'value2' });
expect(parser.getToolCallMeta(0)).toEqual({
id: 'call_1',
name: 'function1',
});
expect(parser.getToolCallMeta(1)).toEqual({
id: 'call_2',
name: 'function2',
});
});
it('should handle interleaved chunks from multiple tool calls', () => {
let result1 = parser.addChunk(0, '{"param1":', 'call_1', 'function1');
let result2 = parser.addChunk(1, '{"param2":', 'call_2', 'function2');
expect(result1.complete).toBe(false);
expect(result2.complete).toBe(false);
result1 = parser.addChunk(0, ' "value1"}');
result2 = parser.addChunk(1, ' "value2"}');
expect(result1.complete).toBe(true);
expect(result1.value).toEqual({ param1: 'value1' });
expect(result2.complete).toBe(true);
expect(result2.value).toEqual({ param2: 'value2' });
});
it('should maintain separate state for each index', () => {
parser.addChunk(0, '{"nested": {"deep":', 'call_1', 'function1');
parser.addChunk(1, '{"simple":', 'call_2', 'function2');
expect(parser.getState(0).depth).toBe(2);
expect(parser.getState(1).depth).toBe(1);
const result1 = parser.addChunk(0, ' "value"}}');
const result2 = parser.addChunk(1, ' "value"}');
expect(result1.complete).toBe(true);
expect(result2.complete).toBe(true);
});
});
describe('Tool call metadata handling', () => {
it('should store and retrieve tool call metadata', () => {
parser.addChunk(0, '{"param": "value"}', 'call_123', 'my_function');
const meta = parser.getToolCallMeta(0);
expect(meta.id).toBe('call_123');
expect(meta.name).toBe('my_function');
});
it('should handle metadata-only chunks', () => {
const result = parser.addChunk(0, '', 'call_123', 'my_function');
expect(result.complete).toBe(false);
const meta = parser.getToolCallMeta(0);
expect(meta.id).toBe('call_123');
expect(meta.name).toBe('my_function');
});
it('should update metadata incrementally', () => {
parser.addChunk(0, '', 'call_123');
expect(parser.getToolCallMeta(0).id).toBe('call_123');
expect(parser.getToolCallMeta(0).name).toBeUndefined();
parser.addChunk(0, '{"param":', undefined, 'my_function');
expect(parser.getToolCallMeta(0).id).toBe('call_123');
expect(parser.getToolCallMeta(0).name).toBe('my_function');
});
it('should detect new tool call with same index and reset state', () => {
// First tool call
const result1 = parser.addChunk(
0,
'{"param1": "value1"}',
'call_1',
'function1',
);
expect(result1.complete).toBe(true);
// New tool call with same index but different function name should reset
const result2 = parser.addChunk(0, '{"param2":', 'call_2', 'function2');
expect(result2.complete).toBe(false);
expect(parser.getBuffer(0)).toBe('{"param2":');
expect(parser.getToolCallMeta(0).name).toBe('function2');
expect(parser.getToolCallMeta(0).id).toBe('call_2');
});
});
describe('Completed tool calls', () => {
it('should return completed tool calls', () => {
parser.addChunk(0, '{"param1": "value1"}', 'call_1', 'function1');
parser.addChunk(1, '{"param2": "value2"}', 'call_2', 'function2');
const completed = parser.getCompletedToolCalls();
expect(completed).toHaveLength(2);
expect(completed[0]).toEqual({
id: 'call_1',
name: 'function1',
args: { param1: 'value1' },
index: 0,
});
expect(completed[1]).toEqual({
id: 'call_2',
name: 'function2',
args: { param2: 'value2' },
index: 1,
});
});
it('should handle completed tool calls with repair', () => {
parser.addChunk(0, '{"text": "unclosed', 'call_1', 'function1');
const completed = parser.getCompletedToolCalls();
expect(completed).toHaveLength(1);
expect(completed[0].args).toEqual({ text: 'unclosed' });
});
it('should use safeJsonParse as fallback for malformed JSON', () => {
// Simulate a case where JSON.parse fails but jsonrepair can fix it
parser.addChunk(
0,
'{"valid": "data", "invalid": }',
'call_1',
'function1',
);
const completed = parser.getCompletedToolCalls();
expect(completed).toHaveLength(1);
// jsonrepair should fix the malformed JSON by setting invalid to null
expect(completed[0].args).toEqual({ valid: 'data', invalid: null });
});
it('should not return tool calls without function name', () => {
parser.addChunk(0, '{"param": "value"}', 'call_1'); // No function name
const completed = parser.getCompletedToolCalls();
expect(completed).toHaveLength(0);
});
it('should not return tool calls with empty buffer', () => {
parser.addChunk(0, '', 'call_1', 'function1'); // Empty buffer
const completed = parser.getCompletedToolCalls();
expect(completed).toHaveLength(0);
});
});
describe('Reset functionality', () => {
it('should reset specific index', () => {
parser.addChunk(0, '{"param":', 'call_1', 'function1');
parser.addChunk(1, '{"other":', 'call_2', 'function2');
parser.resetIndex(0);
expect(parser.getBuffer(0)).toBe('');
expect(parser.getState(0)).toEqual({
depth: 0,
inString: false,
escape: false,
});
expect(parser.getToolCallMeta(0)).toEqual({});
// Index 1 should remain unchanged
expect(parser.getBuffer(1)).toBe('{"other":');
expect(parser.getToolCallMeta(1)).toEqual({
id: 'call_2',
name: 'function2',
});
});
it('should reset entire parser state', () => {
parser.addChunk(0, '{"param1":', 'call_1', 'function1');
parser.addChunk(1, '{"param2":', 'call_2', 'function2');
parser.reset();
expect(parser.getBuffer(0)).toBe('');
expect(parser.getBuffer(1)).toBe('');
expect(parser.getToolCallMeta(0)).toEqual({});
expect(parser.getToolCallMeta(1)).toEqual({});
expect(parser.getCompletedToolCalls()).toHaveLength(0);
});
});
describe('Edge cases', () => {
it('should handle very large JSON objects', () => {
const largeObject = { data: 'x'.repeat(10000) };
const jsonString = JSON.stringify(largeObject);
const result = parser.addChunk(0, jsonString, 'call_1', 'function1');
expect(result.complete).toBe(true);
expect(result.value).toEqual(largeObject);
});
it('should handle deeply nested structures', () => {
let nested: unknown = 'value';
for (let i = 0; i < 100; i++) {
nested = { level: nested };
}
const jsonString = JSON.stringify(nested);
const result = parser.addChunk(0, jsonString, 'call_1', 'function1');
expect(result.complete).toBe(true);
expect(result.value).toEqual(nested);
});
it('should handle JSON with unicode characters', () => {
const result = parser.addChunk(
0,
'{"emoji": "🚀", "chinese": "你好"}',
'call_1',
'function1',
);
expect(result.complete).toBe(true);
expect(result.value).toEqual({ emoji: '🚀', chinese: '你好' });
});
it('should handle JSON with null and boolean values', () => {
const result = parser.addChunk(
0,
'{"null": null, "bool": true, "false": false}',
'call_1',
'function1',
);
expect(result.complete).toBe(true);
expect(result.value).toEqual({ null: null, bool: true, false: false });
});
it('should handle JSON with numbers', () => {
const result = parser.addChunk(
0,
'{"int": 42, "float": 3.14, "negative": -1, "exp": 1e5}',
'call_1',
'function1',
);
expect(result.complete).toBe(true);
expect(result.value).toEqual({
int: 42,
float: 3.14,
negative: -1,
exp: 1e5,
});
});
it('should handle whitespace-only chunks', () => {
let result = parser.addChunk(0, ' \n\t ', 'call_1', 'function1');
expect(result.complete).toBe(false);
result = parser.addChunk(0, '{"key": "value"}');
expect(result.complete).toBe(true);
expect(result.value).toEqual({ key: 'value' });
});
it('should handle chunks with only structural characters', () => {
let result = parser.addChunk(0, '{', 'call_1', 'function1');
expect(result.complete).toBe(false);
expect(parser.getState(0).depth).toBe(1);
result = parser.addChunk(0, '}');
expect(result.complete).toBe(true);
expect(result.value).toEqual({});
});
});
describe('Real-world streaming scenarios', () => {
it('should handle typical OpenAI streaming pattern', () => {
// Simulate how OpenAI typically streams tool call arguments
const chunks = [
'{"',
'query',
'": "',
'What is',
' the weather',
' in Paris',
'?"}',
];
let result: ToolCallParseResult = { complete: false };
for (let i = 0; i < chunks.length; i++) {
result = parser.addChunk(
0,
chunks[i],
i === 0 ? 'call_1' : undefined,
i === 0 ? 'get_weather' : undefined,
);
if (i < chunks.length - 1) {
expect(result.complete).toBe(false);
}
}
expect(result.complete).toBe(true);
expect(result.value).toEqual({ query: 'What is the weather in Paris?' });
});
it('should handle multiple concurrent tool calls streaming', () => {
// Simulate multiple tool calls being streamed simultaneously
parser.addChunk(0, '{"location":', 'call_1', 'get_weather');
parser.addChunk(1, '{"query":', 'call_2', 'search_web');
parser.addChunk(0, ' "New York"}');
const result1 = parser.addChunk(1, ' "OpenAI GPT"}');
expect(result1.complete).toBe(true);
expect(result1.value).toEqual({ query: 'OpenAI GPT' });
const completed = parser.getCompletedToolCalls();
expect(completed).toHaveLength(2);
expect(completed.find((tc) => tc.name === 'get_weather')?.args).toEqual({
location: 'New York',
});
expect(completed.find((tc) => tc.name === 'search_web')?.args).toEqual({
query: 'OpenAI GPT',
});
});
it('should handle malformed streaming that gets repaired', () => {
// Simulate a stream that gets cut off mid-string
parser.addChunk(0, '{"message": "Hello world', 'call_1', 'send_message');
const completed = parser.getCompletedToolCalls();
expect(completed).toHaveLength(1);
expect(completed[0].args).toEqual({ message: 'Hello world' });
});
});
});

View File

@@ -0,0 +1,300 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { safeJsonParse } from '../../utils/safeJsonParse.js';
/**
* Type definition for the result of parsing a JSON chunk in tool calls
*/
export interface ToolCallParseResult {
/** Whether the JSON parsing is complete */
complete: boolean;
/** The parsed JSON value (only present when complete is true) */
value?: Record<string, unknown>;
/** Error information if parsing failed */
error?: Error;
/** Whether the JSON was repaired (e.g., auto-closed unclosed strings) */
repaired?: boolean;
}
/**
* Streaming Tool Call Parser Implementation
*
* This class implements a sophisticated streaming parser specifically designed for
* handling tool call arguments that arrive as partial JSON data in chunks during
* OpenAI streaming responses. It extends the principles from the streaming JSON parser
* to handle the specific requirements of tool call processing.
*
* Key Features:
* - Real-time depth tracking for nested JSON structures in tool arguments
* - Proper handling of string literals and escape sequences
* - Automatic repair of common JSON formatting issues
* - Support for multiple consecutive tool calls with same or different function names
* - Memory-efficient processing without storing complete JSON in memory
* - State management for individual tool call indices
*/
export class StreamingToolCallParser {
/** Accumulated buffer containing all received chunks for each tool call index */
private buffers: Map<number, string> = new Map();
/** Current nesting depth in JSON structure for each tool call index */
private depths: Map<number, number> = new Map();
/** Whether we're currently inside a string literal for each tool call index */
private inStrings: Map<number, boolean> = new Map();
/** Whether the next character should be treated as escaped for each tool call index */
private escapes: Map<number, boolean> = new Map();
/** Metadata for each tool call index */
private toolCallMeta: Map<number, { id?: string; name?: string }> = new Map();
/**
* Processes a new chunk of tool call data and attempts to parse complete JSON objects
*
* This method implements a state machine that tracks:
* 1. JSON structure depth (brackets and braces) per tool call index
* 2. String literal boundaries per tool call index
* 3. Escape sequences within strings per tool call index
* 4. Tool call metadata (id, function name) per tool call index
*
* The parser only attempts to parse when the depth returns to 0, indicating
* a complete JSON structure has been received for that specific tool call index.
*
* @param index - The tool call index from OpenAI streaming response
* @param chunk - A string chunk containing partial JSON data for arguments
* @param id - Optional tool call ID
* @param name - Optional function name
* @returns ToolCallParseResult indicating whether parsing is complete and any parsed value
*/
addChunk(
index: number,
chunk: string,
id?: string,
name?: string,
): ToolCallParseResult {
// Initialize state for this index if not exists
if (!this.buffers.has(index)) {
this.buffers.set(index, '');
this.depths.set(index, 0);
this.inStrings.set(index, false);
this.escapes.set(index, false);
this.toolCallMeta.set(index, {});
}
// Update metadata
const meta = this.toolCallMeta.get(index)!;
if (id) meta.id = id;
if (name) {
// If this is a new function name and we have existing arguments,
// it might be a new tool call with the same index - reset the buffer
if (meta.name && meta.name !== name && this.buffers.get(index)) {
const currentBuffer = this.buffers.get(index)!;
// Check if current buffer contains complete JSON
if (currentBuffer.trim()) {
try {
JSON.parse(currentBuffer);
// If we can parse it, this is likely a new tool call - reset state
this.resetIndex(index);
// Update metadata after reset
const resetMeta = this.toolCallMeta.get(index)!;
if (id) resetMeta.id = id;
resetMeta.name = name;
} catch {
// Current buffer is incomplete, continue accumulating
meta.name = name;
}
} else {
meta.name = name;
}
} else {
meta.name = name;
}
}
// Get current state for this index
const currentBuffer = this.buffers.get(index)!;
const currentDepth = this.depths.get(index)!;
const currentInString = this.inStrings.get(index)!;
const currentEscape = this.escapes.get(index)!;
// Add chunk to buffer
const newBuffer = currentBuffer + chunk;
this.buffers.set(index, newBuffer);
// Track JSON structure depth - only count brackets/braces outside of strings
let depth = currentDepth;
let inString = currentInString;
let escape = currentEscape;
for (const char of chunk) {
if (!inString) {
if (char === '{' || char === '[') depth++;
else if (char === '}' || char === ']') depth--;
}
// Track string boundaries - toggle inString state on unescaped quotes
if (char === '"' && !escape) {
inString = !inString;
}
// Track escape sequences - backslash followed by any character is escaped
escape = char === '\\' && !escape;
}
// Update state
this.depths.set(index, depth);
this.inStrings.set(index, inString);
this.escapes.set(index, escape);
// Attempt parse when we're back at root level (depth 0) and have data
if (depth === 0 && newBuffer.trim().length > 0) {
try {
// Standard JSON parsing attempt
const parsed = JSON.parse(newBuffer);
return { complete: true, value: parsed };
} catch (e) {
// Intelligent repair: try auto-closing unclosed strings
if (inString) {
try {
const repaired = JSON.parse(newBuffer + '"');
return {
complete: true,
value: repaired,
repaired: true,
};
} catch {
// If repair fails, fall through to error case
}
}
return {
complete: false,
error: e instanceof Error ? e : new Error(String(e)),
};
}
}
// JSON structure is incomplete, continue accumulating chunks
return { complete: false };
}
/**
* Gets the current tool call metadata for a specific index
*
* @param index - The tool call index
* @returns Object containing id and name if available
*/
getToolCallMeta(index: number): { id?: string; name?: string } {
return this.toolCallMeta.get(index) || {};
}
/**
* Gets all completed tool calls that are ready to be emitted
* This method should be called when the streaming is complete (finish_reason is present)
*
* @returns Array of completed tool calls with their metadata and parsed arguments
*/
getCompletedToolCalls(): Array<{
id?: string;
name?: string;
args: Record<string, unknown>;
index: number;
}> {
const completed: Array<{
id?: string;
name?: string;
args: Record<string, unknown>;
index: number;
}> = [];
for (const [index, buffer] of this.buffers.entries()) {
const meta = this.toolCallMeta.get(index);
if (meta?.name && buffer.trim()) {
let args: Record<string, unknown> = {};
// Try to parse the final buffer
try {
args = JSON.parse(buffer);
} catch {
// Try with repair (auto-close strings)
const inString = this.inStrings.get(index);
if (inString) {
try {
args = JSON.parse(buffer + '"');
} catch {
// If all parsing fails, use safeJsonParse as fallback
args = safeJsonParse(buffer, {});
}
} else {
args = safeJsonParse(buffer, {});
}
}
completed.push({
id: meta.id,
name: meta.name,
args,
index,
});
}
}
return completed;
}
/**
* Resets the parser state for a specific tool call index
*
* @param index - The tool call index to reset
*/
resetIndex(index: number): void {
this.buffers.set(index, '');
this.depths.set(index, 0);
this.inStrings.set(index, false);
this.escapes.set(index, false);
this.toolCallMeta.set(index, {});
}
/**
* Resets the entire parser state for processing a new stream
*
* This method clears all internal state variables, allowing the parser
* to be reused for multiple streams without interference.
*/
reset(): void {
this.buffers.clear();
this.depths.clear();
this.inStrings.clear();
this.escapes.clear();
this.toolCallMeta.clear();
}
/**
* Gets the current accumulated buffer content for a specific index
*
* Useful for debugging or when you need to inspect the raw data
* that has been accumulated so far.
*
* @param index - The tool call index
* @returns The current buffer content for the specified index
*/
getBuffer(index: number): string {
return this.buffers.get(index) || '';
}
/**
* Gets the current parsing state information for a specific index
*
* @param index - The tool call index
* @returns Object containing current depth, string state, and escape state
*/
getState(index: number): {
depth: number;
inString: boolean;
escape: boolean;
} {
return {
depth: this.depths.get(index) || 0,
inString: this.inStrings.get(index) || false,
escape: this.escapes.get(index) || false,
};
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -38,7 +38,7 @@ export interface TelemetryService {
context: RequestContext,
responses: GenerateContentResponse[],
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
openaiResponse?: OpenAI.Chat.ChatCompletion,
openaiChunks?: OpenAI.Chat.ChatCompletionChunk[],
): Promise<void>;
}
@@ -82,16 +82,16 @@ export class DefaultTelemetryService implements TelemetryService {
// Log API error event for UI telemetry
const errorEvent = new ApiErrorEvent(
// eslint-disable-next-line @typescript-eslint/no-explicit-any
(error as any).requestID || 'unknown',
(error as any)?.requestID || 'unknown',
context.model,
errorMessage,
context.duration,
context.userPromptId,
context.authType,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
(error as any).type,
(error as any)?.type,
// eslint-disable-next-line @typescript-eslint/no-explicit-any
(error as any).code,
(error as any)?.code,
);
logApiError(this.config, errorEvent);
@@ -109,7 +109,7 @@ export class DefaultTelemetryService implements TelemetryService {
context: RequestContext,
responses: GenerateContentResponse[],
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
openaiResponse?: OpenAI.Chat.ChatCompletion,
openaiChunks?: OpenAI.Chat.ChatCompletionChunk[],
): Promise<void> {
// Get final usage metadata from the last response that has it
const finalUsageMetadata = responses
@@ -129,9 +129,127 @@ export class DefaultTelemetryService implements TelemetryService {
logApiResponse(this.config, responseEvent);
// Log interaction if enabled
if (this.enableOpenAILogging && openaiRequest && openaiResponse) {
await openaiLogger.logInteraction(openaiRequest, openaiResponse);
// Log interaction if enabled - combine chunks only when needed
if (
this.enableOpenAILogging &&
openaiRequest &&
openaiChunks &&
openaiChunks.length > 0
) {
const combinedResponse = this.combineOpenAIChunksForLogging(openaiChunks);
await openaiLogger.logInteraction(openaiRequest, combinedResponse);
}
}
/**
* Combine OpenAI chunks for logging purposes
* This method consolidates all OpenAI stream chunks into a single ChatCompletion response
* for telemetry and logging purposes, avoiding unnecessary format conversions
*/
private combineOpenAIChunksForLogging(
chunks: OpenAI.Chat.ChatCompletionChunk[],
): OpenAI.Chat.ChatCompletion {
if (chunks.length === 0) {
throw new Error('No chunks to combine');
}
const firstChunk = chunks[0];
// Combine all content from chunks
let combinedContent = '';
const toolCalls: OpenAI.Chat.ChatCompletionMessageToolCall[] = [];
let finishReason:
| 'stop'
| 'length'
| 'tool_calls'
| 'content_filter'
| 'function_call'
| null = null;
let usage:
| {
prompt_tokens: number;
completion_tokens: number;
total_tokens: number;
}
| undefined;
for (const chunk of chunks) {
const choice = chunk.choices?.[0];
if (choice) {
// Combine text content
if (choice.delta?.content) {
combinedContent += choice.delta.content;
}
// Collect tool calls
if (choice.delta?.tool_calls) {
for (const toolCall of choice.delta.tool_calls) {
if (toolCall.index !== undefined) {
if (!toolCalls[toolCall.index]) {
toolCalls[toolCall.index] = {
id: toolCall.id || '',
type: toolCall.type || 'function',
function: { name: '', arguments: '' },
};
}
if (toolCall.function?.name) {
toolCalls[toolCall.index].function.name +=
toolCall.function.name;
}
if (toolCall.function?.arguments) {
toolCalls[toolCall.index].function.arguments +=
toolCall.function.arguments;
}
}
}
}
// Get finish reason from the last chunk
if (choice.finish_reason) {
finishReason = choice.finish_reason;
}
}
// Get usage from the last chunk that has it
if (chunk.usage) {
usage = chunk.usage;
}
}
// Create the combined ChatCompletion response
const message: OpenAI.Chat.ChatCompletionMessage = {
role: 'assistant',
content: combinedContent || null,
refusal: null,
};
// Add tool calls if any
if (toolCalls.length > 0) {
message.tool_calls = toolCalls.filter((tc) => tc.id); // Filter out empty tool calls
}
const combinedResponse: OpenAI.Chat.ChatCompletion = {
id: firstChunk.id,
object: 'chat.completion',
created: firstChunk.created,
model: firstChunk.model,
choices: [
{
index: 0,
message,
finish_reason: finishReason || 'stop',
logprobs: null,
},
],
usage: usage || {
prompt_tokens: 0,
completion_tokens: 0,
total_tokens: 0,
},
system_fingerprint: firstChunk.system_fingerprint,
};
return combinedResponse;
}
}