Vision model support for Qwen-OAuth (#525)

* refactor: openaiContentGenerator

* refactor: optimize stream handling

* refactor: re-organize refactored files

* fix: unit test cases

* feat: `/model` command for switching to vision model

* fix: lint error

* feat: add image tokenizer to fit vlm context window

* fix: lint and type errors

* feat: add `visionModelPreview` to control default visibility of vision models

* fix: remove deprecated files

* fix: align supported image formats with bailian doc
This commit is contained in:
Mingholy
2025-09-18 13:32:00 +08:00
committed by GitHub
parent 56808ac210
commit 761833c915
41 changed files with 4083 additions and 5336 deletions

View File

@@ -0,0 +1,157 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { describe, it, expect } from 'vitest';
import { ImageTokenizer } from './imageTokenizer.js';
describe('ImageTokenizer', () => {
const tokenizer = new ImageTokenizer();
describe('token calculation', () => {
it('should calculate tokens based on image dimensions with reference logic', () => {
const metadata = {
width: 28,
height: 28,
mimeType: 'image/png',
dataSize: 1000,
};
const tokens = tokenizer.calculateTokens(metadata);
// 28x28 = 784 pixels = 1 image token + 2 special tokens = 3 total
// But minimum scaling may apply for small images
expect(tokens).toBeGreaterThanOrEqual(6); // Minimum after scaling + special tokens
});
it('should calculate tokens for larger images', () => {
const metadata = {
width: 512,
height: 512,
mimeType: 'image/png',
dataSize: 10000,
};
const tokens = tokenizer.calculateTokens(metadata);
// 512x512 with reference logic: rounded dimensions + scaling + special tokens
expect(tokens).toBeGreaterThan(300);
expect(tokens).toBeLessThan(400); // Should be reasonable for 512x512
});
it('should enforce minimum tokens per image with scaling', () => {
const metadata = {
width: 1,
height: 1,
mimeType: 'image/png',
dataSize: 100,
};
const tokens = tokenizer.calculateTokens(metadata);
// Tiny images get scaled up to minimum pixels + special tokens
expect(tokens).toBeGreaterThanOrEqual(6); // 4 image tokens + 2 special tokens
});
it('should handle very large images with scaling', () => {
const metadata = {
width: 8192,
height: 8192,
mimeType: 'image/png',
dataSize: 100000,
};
const tokens = tokenizer.calculateTokens(metadata);
// Very large images should be scaled down to max limit + special tokens
expect(tokens).toBeLessThanOrEqual(16386); // 16384 max + 2 special tokens
expect(tokens).toBeGreaterThan(16000); // Should be close to the limit
});
});
describe('PNG dimension extraction', () => {
it('should extract dimensions from valid PNG', async () => {
// 1x1 PNG image in base64
const pngBase64 =
'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChAI9jU77yQAAAABJRU5ErkJggg==';
const metadata = await tokenizer.extractImageMetadata(
pngBase64,
'image/png',
);
expect(metadata.width).toBe(1);
expect(metadata.height).toBe(1);
expect(metadata.mimeType).toBe('image/png');
});
it('should handle invalid PNG gracefully', async () => {
const invalidBase64 = 'invalid-png-data';
const metadata = await tokenizer.extractImageMetadata(
invalidBase64,
'image/png',
);
// Should return default dimensions
expect(metadata.width).toBe(512);
expect(metadata.height).toBe(512);
expect(metadata.mimeType).toBe('image/png');
});
});
describe('batch processing', () => {
it('should process multiple images serially', async () => {
const pngBase64 =
'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChAI9jU77yQAAAABJRU5ErkJggg==';
const images = [
{ data: pngBase64, mimeType: 'image/png' },
{ data: pngBase64, mimeType: 'image/png' },
{ data: pngBase64, mimeType: 'image/png' },
];
const tokens = await tokenizer.calculateTokensBatch(images);
expect(tokens).toHaveLength(3);
expect(tokens.every((t) => t >= 4)).toBe(true); // All should have at least 4 tokens
});
it('should handle mixed valid and invalid images', async () => {
const validPng =
'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChAI9jU77yQAAAABJRU5ErkJggg==';
const invalidPng = 'invalid-data';
const images = [
{ data: validPng, mimeType: 'image/png' },
{ data: invalidPng, mimeType: 'image/png' },
];
const tokens = await tokenizer.calculateTokensBatch(images);
expect(tokens).toHaveLength(2);
expect(tokens.every((t) => t >= 4)).toBe(true); // All should have at least minimum tokens
});
});
describe('different image formats', () => {
it('should handle different MIME types', async () => {
const pngBase64 =
'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChAI9jU77yQAAAABJRU5ErkJggg==';
const formats = ['image/png', 'image/jpeg', 'image/webp', 'image/gif'];
for (const mimeType of formats) {
const metadata = await tokenizer.extractImageMetadata(
pngBase64,
mimeType,
);
expect(metadata.mimeType).toBe(mimeType);
expect(metadata.width).toBeGreaterThan(0);
expect(metadata.height).toBeGreaterThan(0);
}
});
});
});

View File

@@ -0,0 +1,505 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import type { ImageMetadata } from './types.js';
import { isSupportedImageMimeType } from './supportedImageFormats.js';
/**
* Image tokenizer for calculating image tokens based on dimensions
*
* Key rules:
* - 28x28 pixels = 1 token
* - Minimum: 4 tokens per image
* - Maximum: 16384 tokens per image
* - Additional: 2 special tokens (vision_bos + vision_eos)
* - Supports: PNG, JPEG, WebP, GIF, BMP, TIFF, HEIC formats
*/
export class ImageTokenizer {
/** 28x28 pixels = 1 token */
private static readonly PIXELS_PER_TOKEN = 28 * 28;
/** Minimum tokens per image */
private static readonly MIN_TOKENS_PER_IMAGE = 4;
/** Maximum tokens per image */
private static readonly MAX_TOKENS_PER_IMAGE = 16384;
/** Special tokens for vision markers */
private static readonly VISION_SPECIAL_TOKENS = 2;
/**
* Extract image metadata from base64 data
*
* @param base64Data Base64-encoded image data (with or without data URL prefix)
* @param mimeType MIME type of the image
* @returns Promise resolving to ImageMetadata with dimensions and format info
*/
async extractImageMetadata(
base64Data: string,
mimeType: string,
): Promise<ImageMetadata> {
try {
// Check if the MIME type is supported
if (!isSupportedImageMimeType(mimeType)) {
console.warn(`Unsupported image format: ${mimeType}`);
// Return default metadata for unsupported formats
return {
width: 512,
height: 512,
mimeType,
dataSize: Math.floor(base64Data.length * 0.75),
};
}
const cleanBase64 = base64Data.replace(/^data:[^;]+;base64,/, '');
const buffer = Buffer.from(cleanBase64, 'base64');
const dimensions = await this.extractDimensions(buffer, mimeType);
return {
width: dimensions.width,
height: dimensions.height,
mimeType,
dataSize: buffer.length,
};
} catch (error) {
console.warn('Failed to extract image metadata:', error);
// Return default metadata for fallback
return {
width: 512,
height: 512,
mimeType,
dataSize: Math.floor(base64Data.length * 0.75),
};
}
}
/**
* Extract image dimensions from buffer based on format
*
* @param buffer Binary image data buffer
* @param mimeType MIME type to determine parsing strategy
* @returns Promise resolving to width and height dimensions
*/
private async extractDimensions(
buffer: Buffer,
mimeType: string,
): Promise<{ width: number; height: number }> {
if (mimeType.includes('png')) {
return this.extractPngDimensions(buffer);
}
if (mimeType.includes('jpeg') || mimeType.includes('jpg')) {
return this.extractJpegDimensions(buffer);
}
if (mimeType.includes('webp')) {
return this.extractWebpDimensions(buffer);
}
if (mimeType.includes('gif')) {
return this.extractGifDimensions(buffer);
}
if (mimeType.includes('bmp')) {
return this.extractBmpDimensions(buffer);
}
if (mimeType.includes('tiff')) {
return this.extractTiffDimensions(buffer);
}
if (mimeType.includes('heic')) {
return this.extractHeicDimensions(buffer);
}
return { width: 512, height: 512 };
}
/**
* Extract PNG dimensions from IHDR chunk
* PNG signature: 89 50 4E 47 0D 0A 1A 0A
* Width/height at bytes 16-19 and 20-23 (big-endian)
*/
private extractPngDimensions(buffer: Buffer): {
width: number;
height: number;
} {
if (buffer.length < 24) {
throw new Error('Invalid PNG: buffer too short');
}
// Verify PNG signature
const signature = buffer.subarray(0, 8);
const expectedSignature = Buffer.from([
0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a,
]);
if (!signature.equals(expectedSignature)) {
throw new Error('Invalid PNG signature');
}
const width = buffer.readUInt32BE(16);
const height = buffer.readUInt32BE(20);
return { width, height };
}
/**
* Extract JPEG dimensions from SOF (Start of Frame) markers
* JPEG starts with FF D8, SOF markers: 0xC0-0xC3, 0xC5-0xC7, 0xC9-0xCB, 0xCD-0xCF
* Dimensions at offset +5 (height) and +7 (width) from SOF marker
*/
private extractJpegDimensions(buffer: Buffer): {
width: number;
height: number;
} {
if (buffer.length < 4 || buffer[0] !== 0xff || buffer[1] !== 0xd8) {
throw new Error('Invalid JPEG signature');
}
let offset = 2;
while (offset < buffer.length - 8) {
if (buffer[offset] !== 0xff) {
offset++;
continue;
}
const marker = buffer[offset + 1];
// SOF markers
if (
(marker >= 0xc0 && marker <= 0xc3) ||
(marker >= 0xc5 && marker <= 0xc7) ||
(marker >= 0xc9 && marker <= 0xcb) ||
(marker >= 0xcd && marker <= 0xcf)
) {
const height = buffer.readUInt16BE(offset + 5);
const width = buffer.readUInt16BE(offset + 7);
return { width, height };
}
const segmentLength = buffer.readUInt16BE(offset + 2);
offset += 2 + segmentLength;
}
throw new Error('Could not find JPEG dimensions');
}
/**
* Extract WebP dimensions from RIFF container
* Supports VP8, VP8L, and VP8X formats
*/
private extractWebpDimensions(buffer: Buffer): {
width: number;
height: number;
} {
if (buffer.length < 30) {
throw new Error('Invalid WebP: too short');
}
const riffSignature = buffer.subarray(0, 4).toString('ascii');
const webpSignature = buffer.subarray(8, 12).toString('ascii');
if (riffSignature !== 'RIFF' || webpSignature !== 'WEBP') {
throw new Error('Invalid WebP signature');
}
const format = buffer.subarray(12, 16).toString('ascii');
if (format === 'VP8 ') {
const width = buffer.readUInt16LE(26) & 0x3fff;
const height = buffer.readUInt16LE(28) & 0x3fff;
return { width, height };
} else if (format === 'VP8L') {
const bits = buffer.readUInt32LE(21);
const width = (bits & 0x3fff) + 1;
const height = ((bits >> 14) & 0x3fff) + 1;
return { width, height };
} else if (format === 'VP8X') {
const width = (buffer.readUInt32LE(24) & 0xffffff) + 1;
const height = (buffer.readUInt32LE(26) & 0xffffff) + 1;
return { width, height };
}
throw new Error('Unsupported WebP format');
}
/**
* Extract GIF dimensions from header
* Supports GIF87a and GIF89a formats
*/
private extractGifDimensions(buffer: Buffer): {
width: number;
height: number;
} {
if (buffer.length < 10) {
throw new Error('Invalid GIF: too short');
}
const signature = buffer.subarray(0, 6).toString('ascii');
if (signature !== 'GIF87a' && signature !== 'GIF89a') {
throw new Error('Invalid GIF signature');
}
const width = buffer.readUInt16LE(6);
const height = buffer.readUInt16LE(8);
return { width, height };
}
/**
* Calculate tokens for an image based on its metadata
*
* @param metadata Image metadata containing width, height, and format info
* @returns Total token count including base image tokens and special tokens
*/
calculateTokens(metadata: ImageMetadata): number {
return this.calculateTokensWithScaling(metadata.width, metadata.height);
}
/**
* Calculate tokens with scaling logic
*
* Steps:
* 1. Normalize to 28-pixel multiples
* 2. Scale large images down, small images up
* 3. Calculate tokens: pixels / 784 + 2 special tokens
*
* @param width Original image width in pixels
* @param height Original image height in pixels
* @returns Total token count for the image
*/
private calculateTokensWithScaling(width: number, height: number): number {
// Normalize to 28-pixel multiples
let hBar = Math.round(height / 28) * 28;
let wBar = Math.round(width / 28) * 28;
// Define pixel boundaries
const minPixels =
ImageTokenizer.MIN_TOKENS_PER_IMAGE * ImageTokenizer.PIXELS_PER_TOKEN;
const maxPixels =
ImageTokenizer.MAX_TOKENS_PER_IMAGE * ImageTokenizer.PIXELS_PER_TOKEN;
// Apply scaling
if (hBar * wBar > maxPixels) {
// Scale down large images
const beta = Math.sqrt((height * width) / maxPixels);
hBar = Math.floor(height / beta / 28) * 28;
wBar = Math.floor(width / beta / 28) * 28;
} else if (hBar * wBar < minPixels) {
// Scale up small images
const beta = Math.sqrt(minPixels / (height * width));
hBar = Math.ceil((height * beta) / 28) * 28;
wBar = Math.ceil((width * beta) / 28) * 28;
}
// Calculate tokens
const imageTokens = Math.floor(
(hBar * wBar) / ImageTokenizer.PIXELS_PER_TOKEN,
);
return imageTokens + ImageTokenizer.VISION_SPECIAL_TOKENS;
}
/**
* Calculate tokens for multiple images serially
*
* @param base64DataArray Array of image data with MIME type information
* @returns Promise resolving to array of token counts in same order as input
*/
async calculateTokensBatch(
base64DataArray: Array<{ data: string; mimeType: string }>,
): Promise<number[]> {
const results: number[] = [];
for (const { data, mimeType } of base64DataArray) {
try {
const metadata = await this.extractImageMetadata(data, mimeType);
results.push(this.calculateTokens(metadata));
} catch (error) {
console.warn('Error calculating tokens for image:', error);
// Return minimum tokens as fallback
results.push(
ImageTokenizer.MIN_TOKENS_PER_IMAGE +
ImageTokenizer.VISION_SPECIAL_TOKENS,
);
}
}
return results;
}
/**
* Extract BMP dimensions from header
* BMP signature: 42 4D (BM)
* Width/height at bytes 18-21 and 22-25 (little-endian)
*/
private extractBmpDimensions(buffer: Buffer): {
width: number;
height: number;
} {
if (buffer.length < 26) {
throw new Error('Invalid BMP: buffer too short');
}
// Verify BMP signature
if (buffer[0] !== 0x42 || buffer[1] !== 0x4d) {
throw new Error('Invalid BMP signature');
}
const width = buffer.readUInt32LE(18);
const height = buffer.readUInt32LE(22);
return { width, height: Math.abs(height) }; // Height can be negative for top-down BMPs
}
/**
* Extract TIFF dimensions from IFD (Image File Directory)
* TIFF can be little-endian (II) or big-endian (MM)
* Width/height are stored in IFD entries with tags 0x0100 and 0x0101
*/
private extractTiffDimensions(buffer: Buffer): {
width: number;
height: number;
} {
if (buffer.length < 8) {
throw new Error('Invalid TIFF: buffer too short');
}
// Check byte order
const byteOrder = buffer.subarray(0, 2).toString('ascii');
const isLittleEndian = byteOrder === 'II';
const isBigEndian = byteOrder === 'MM';
if (!isLittleEndian && !isBigEndian) {
throw new Error('Invalid TIFF byte order');
}
// Read magic number (should be 42)
const magic = isLittleEndian
? buffer.readUInt16LE(2)
: buffer.readUInt16BE(2);
if (magic !== 42) {
throw new Error('Invalid TIFF magic number');
}
// Read IFD offset
const ifdOffset = isLittleEndian
? buffer.readUInt32LE(4)
: buffer.readUInt32BE(4);
if (ifdOffset >= buffer.length) {
throw new Error('Invalid TIFF IFD offset');
}
// Read number of directory entries
const numEntries = isLittleEndian
? buffer.readUInt16LE(ifdOffset)
: buffer.readUInt16BE(ifdOffset);
let width = 0;
let height = 0;
// Parse IFD entries
for (let i = 0; i < numEntries; i++) {
const entryOffset = ifdOffset + 2 + i * 12;
if (entryOffset + 12 > buffer.length) break;
const tag = isLittleEndian
? buffer.readUInt16LE(entryOffset)
: buffer.readUInt16BE(entryOffset);
const type = isLittleEndian
? buffer.readUInt16LE(entryOffset + 2)
: buffer.readUInt16BE(entryOffset + 2);
const value = isLittleEndian
? buffer.readUInt32LE(entryOffset + 8)
: buffer.readUInt32BE(entryOffset + 8);
if (tag === 0x0100) {
// ImageWidth
width = type === 3 ? value : value; // SHORT or LONG
} else if (tag === 0x0101) {
// ImageLength (height)
height = type === 3 ? value : value; // SHORT or LONG
}
if (width > 0 && height > 0) break;
}
if (width === 0 || height === 0) {
throw new Error('Could not find TIFF dimensions');
}
return { width, height };
}
/**
* Extract HEIC dimensions from meta box
* HEIC is based on ISO Base Media File Format
* This is a simplified implementation that looks for 'ispe' (Image Spatial Extents) box
*/
private extractHeicDimensions(buffer: Buffer): {
width: number;
height: number;
} {
if (buffer.length < 12) {
throw new Error('Invalid HEIC: buffer too short');
}
// Check for ftyp box with HEIC brand
const ftypBox = buffer.subarray(4, 8).toString('ascii');
if (ftypBox !== 'ftyp') {
throw new Error('Invalid HEIC: missing ftyp box');
}
const brand = buffer.subarray(8, 12).toString('ascii');
if (!['heic', 'heix', 'hevc', 'hevx'].includes(brand)) {
throw new Error('Invalid HEIC brand');
}
// Look for meta box and then ispe box
let offset = 0;
while (offset < buffer.length - 8) {
const boxSize = buffer.readUInt32BE(offset);
const boxType = buffer.subarray(offset + 4, offset + 8).toString('ascii');
if (boxType === 'meta') {
// Look for ispe box inside meta box
const metaOffset = offset + 8;
let innerOffset = metaOffset + 4; // Skip version and flags
while (innerOffset < offset + boxSize - 8) {
const innerBoxSize = buffer.readUInt32BE(innerOffset);
const innerBoxType = buffer
.subarray(innerOffset + 4, innerOffset + 8)
.toString('ascii');
if (innerBoxType === 'ispe') {
// Found Image Spatial Extents box
if (innerOffset + 20 <= buffer.length) {
const width = buffer.readUInt32BE(innerOffset + 12);
const height = buffer.readUInt32BE(innerOffset + 16);
return { width, height };
}
}
if (innerBoxSize === 0) break;
innerOffset += innerBoxSize;
}
}
if (boxSize === 0) break;
offset += boxSize;
}
// Fallback: return default dimensions if we can't parse the structure
console.warn('Could not extract HEIC dimensions, using default');
return { width: 512, height: 512 };
}
}

View File

@@ -0,0 +1,40 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
export { DefaultRequestTokenizer } from './requestTokenizer.js';
import { DefaultRequestTokenizer } from './requestTokenizer.js';
export { TextTokenizer } from './textTokenizer.js';
export { ImageTokenizer } from './imageTokenizer.js';
export type {
RequestTokenizer,
TokenizerConfig,
TokenCalculationResult,
ImageMetadata,
} from './types.js';
// Singleton instance for convenient usage
let defaultTokenizer: DefaultRequestTokenizer | null = null;
/**
* Get the default request tokenizer instance
*/
export function getDefaultTokenizer(): DefaultRequestTokenizer {
if (!defaultTokenizer) {
defaultTokenizer = new DefaultRequestTokenizer();
}
return defaultTokenizer;
}
/**
* Dispose of the default tokenizer instance
*/
export async function disposeDefaultTokenizer(): Promise<void> {
if (defaultTokenizer) {
await defaultTokenizer.dispose();
defaultTokenizer = null;
}
}

View File

@@ -0,0 +1,293 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { describe, it, expect, beforeEach, afterEach } from 'vitest';
import { DefaultRequestTokenizer } from './requestTokenizer.js';
import type { CountTokensParameters } from '@google/genai';
describe('DefaultRequestTokenizer', () => {
let tokenizer: DefaultRequestTokenizer;
beforeEach(() => {
tokenizer = new DefaultRequestTokenizer();
});
afterEach(async () => {
await tokenizer.dispose();
});
describe('text token calculation', () => {
it('should calculate tokens for simple text content', async () => {
const request: CountTokensParameters = {
model: 'test-model',
contents: [
{
role: 'user',
parts: [{ text: 'Hello, world!' }],
},
],
};
const result = await tokenizer.calculateTokens(request);
expect(result.totalTokens).toBeGreaterThan(0);
expect(result.breakdown.textTokens).toBeGreaterThan(0);
expect(result.breakdown.imageTokens).toBe(0);
expect(result.processingTime).toBeGreaterThan(0);
});
it('should handle multiple text parts', async () => {
const request: CountTokensParameters = {
model: 'test-model',
contents: [
{
role: 'user',
parts: [
{ text: 'First part' },
{ text: 'Second part' },
{ text: 'Third part' },
],
},
],
};
const result = await tokenizer.calculateTokens(request);
expect(result.totalTokens).toBeGreaterThan(0);
expect(result.breakdown.textTokens).toBeGreaterThan(0);
});
it('should handle string content', async () => {
const request: CountTokensParameters = {
model: 'test-model',
contents: ['Simple string content'],
};
const result = await tokenizer.calculateTokens(request);
expect(result.totalTokens).toBeGreaterThan(0);
expect(result.breakdown.textTokens).toBeGreaterThan(0);
});
});
describe('image token calculation', () => {
it('should calculate tokens for image content', async () => {
// Create a simple 1x1 PNG image in base64
const pngBase64 =
'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChAI9jU77yQAAAABJRU5ErkJggg==';
const request: CountTokensParameters = {
model: 'test-model',
contents: [
{
role: 'user',
parts: [
{
inlineData: {
mimeType: 'image/png',
data: pngBase64,
},
},
],
},
],
};
const result = await tokenizer.calculateTokens(request);
expect(result.totalTokens).toBeGreaterThanOrEqual(4); // Minimum 4 tokens per image
expect(result.breakdown.imageTokens).toBeGreaterThanOrEqual(4);
expect(result.breakdown.textTokens).toBe(0);
});
it('should handle multiple images', async () => {
const pngBase64 =
'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChAI9jU77yQAAAABJRU5ErkJggg==';
const request: CountTokensParameters = {
model: 'test-model',
contents: [
{
role: 'user',
parts: [
{
inlineData: {
mimeType: 'image/png',
data: pngBase64,
},
},
{
inlineData: {
mimeType: 'image/png',
data: pngBase64,
},
},
],
},
],
};
const result = await tokenizer.calculateTokens(request);
expect(result.totalTokens).toBeGreaterThanOrEqual(8); // At least 4 tokens per image
expect(result.breakdown.imageTokens).toBeGreaterThanOrEqual(8);
});
});
describe('mixed content', () => {
it('should handle text and image content together', async () => {
const pngBase64 =
'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChAI9jU77yQAAAABJRU5ErkJggg==';
const request: CountTokensParameters = {
model: 'test-model',
contents: [
{
role: 'user',
parts: [
{ text: 'Here is an image:' },
{
inlineData: {
mimeType: 'image/png',
data: pngBase64,
},
},
{ text: 'What do you see?' },
],
},
],
};
const result = await tokenizer.calculateTokens(request);
expect(result.totalTokens).toBeGreaterThan(4);
expect(result.breakdown.textTokens).toBeGreaterThan(0);
expect(result.breakdown.imageTokens).toBeGreaterThanOrEqual(4);
});
});
describe('function content', () => {
it('should handle function calls', async () => {
const request: CountTokensParameters = {
model: 'test-model',
contents: [
{
role: 'user',
parts: [
{
functionCall: {
name: 'test_function',
args: { param1: 'value1', param2: 42 },
},
},
],
},
],
};
const result = await tokenizer.calculateTokens(request);
expect(result.totalTokens).toBeGreaterThan(0);
expect(result.breakdown.otherTokens).toBeGreaterThan(0);
});
});
describe('empty content', () => {
it('should handle empty request', async () => {
const request: CountTokensParameters = {
model: 'test-model',
contents: [],
};
const result = await tokenizer.calculateTokens(request);
expect(result.totalTokens).toBe(0);
expect(result.breakdown.textTokens).toBe(0);
expect(result.breakdown.imageTokens).toBe(0);
});
it('should handle undefined contents', async () => {
const request: CountTokensParameters = {
model: 'test-model',
contents: [],
};
const result = await tokenizer.calculateTokens(request);
expect(result.totalTokens).toBe(0);
});
});
describe('configuration', () => {
it('should use custom text encoding', async () => {
const request: CountTokensParameters = {
model: 'test-model',
contents: [
{
role: 'user',
parts: [{ text: 'Test text for encoding' }],
},
],
};
const result = await tokenizer.calculateTokens(request, {
textEncoding: 'cl100k_base',
});
expect(result.totalTokens).toBeGreaterThan(0);
});
it('should process multiple images serially', async () => {
const pngBase64 =
'iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVR42mNkYPhfDwAChAI9jU77yQAAAABJRU5ErkJggg==';
const request: CountTokensParameters = {
model: 'test-model',
contents: [
{
role: 'user',
parts: Array(10).fill({
inlineData: {
mimeType: 'image/png',
data: pngBase64,
},
}),
},
],
};
const result = await tokenizer.calculateTokens(request);
expect(result.totalTokens).toBeGreaterThanOrEqual(60); // At least 6 tokens per image * 10 images
});
});
describe('error handling', () => {
it('should handle malformed image data gracefully', async () => {
const request: CountTokensParameters = {
model: 'test-model',
contents: [
{
role: 'user',
parts: [
{
inlineData: {
mimeType: 'image/png',
data: 'invalid-base64-data',
},
},
],
},
],
};
const result = await tokenizer.calculateTokens(request);
// Should still return some tokens (fallback to minimum)
expect(result.totalTokens).toBeGreaterThanOrEqual(4);
});
});
});

View File

@@ -0,0 +1,341 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import type {
CountTokensParameters,
Content,
Part,
PartUnion,
} from '@google/genai';
import type {
RequestTokenizer,
TokenizerConfig,
TokenCalculationResult,
} from './types.js';
import { TextTokenizer } from './textTokenizer.js';
import { ImageTokenizer } from './imageTokenizer.js';
/**
* Simple request tokenizer that handles text and image content serially
*/
export class DefaultRequestTokenizer implements RequestTokenizer {
private textTokenizer: TextTokenizer;
private imageTokenizer: ImageTokenizer;
constructor() {
this.textTokenizer = new TextTokenizer();
this.imageTokenizer = new ImageTokenizer();
}
/**
* Calculate tokens for a request using serial processing
*/
async calculateTokens(
request: CountTokensParameters,
config: TokenizerConfig = {},
): Promise<TokenCalculationResult> {
const startTime = performance.now();
// Apply configuration
if (config.textEncoding) {
this.textTokenizer = new TextTokenizer(config.textEncoding);
}
try {
// Process request content and group by type
const { textContents, imageContents, audioContents, otherContents } =
this.processAndGroupContents(request);
if (
textContents.length === 0 &&
imageContents.length === 0 &&
audioContents.length === 0 &&
otherContents.length === 0
) {
return {
totalTokens: 0,
breakdown: {
textTokens: 0,
imageTokens: 0,
audioTokens: 0,
otherTokens: 0,
},
processingTime: performance.now() - startTime,
};
}
// Calculate tokens for each content type serially
const textTokens = await this.calculateTextTokens(textContents);
const imageTokens = await this.calculateImageTokens(imageContents);
const audioTokens = await this.calculateAudioTokens(audioContents);
const otherTokens = await this.calculateOtherTokens(otherContents);
const totalTokens = textTokens + imageTokens + audioTokens + otherTokens;
const processingTime = performance.now() - startTime;
return {
totalTokens,
breakdown: {
textTokens,
imageTokens,
audioTokens,
otherTokens,
},
processingTime,
};
} catch (error) {
console.error('Error calculating tokens:', error);
// Fallback calculation
const fallbackTokens = this.calculateFallbackTokens(request);
return {
totalTokens: fallbackTokens,
breakdown: {
textTokens: fallbackTokens,
imageTokens: 0,
audioTokens: 0,
otherTokens: 0,
},
processingTime: performance.now() - startTime,
};
}
}
/**
* Calculate tokens for text contents
*/
private async calculateTextTokens(textContents: string[]): Promise<number> {
if (textContents.length === 0) return 0;
try {
const tokenCounts =
await this.textTokenizer.calculateTokensBatch(textContents);
return tokenCounts.reduce((sum, count) => sum + count, 0);
} catch (error) {
console.warn('Error calculating text tokens:', error);
// Fallback: character-based estimation
const totalChars = textContents.join('').length;
return Math.ceil(totalChars / 4);
}
}
/**
* Calculate tokens for image contents using serial processing
*/
private async calculateImageTokens(
imageContents: Array<{ data: string; mimeType: string }>,
): Promise<number> {
if (imageContents.length === 0) return 0;
try {
const tokenCounts =
await this.imageTokenizer.calculateTokensBatch(imageContents);
return tokenCounts.reduce((sum, count) => sum + count, 0);
} catch (error) {
console.warn('Error calculating image tokens:', error);
// Fallback: minimum tokens per image
return imageContents.length * 6; // 4 image tokens + 2 special tokens as minimum
}
}
/**
* Calculate tokens for audio contents
* TODO: Implement proper audio token calculation
*/
private async calculateAudioTokens(
audioContents: Array<{ data: string; mimeType: string }>,
): Promise<number> {
if (audioContents.length === 0) return 0;
// Placeholder implementation - audio token calculation would depend on
// the specific model's audio processing capabilities
// For now, estimate based on data size
let totalTokens = 0;
for (const audioContent of audioContents) {
try {
const dataSize = Math.floor(audioContent.data.length * 0.75); // Approximate binary size
// Rough estimate: 1 token per 100 bytes of audio data
totalTokens += Math.max(Math.ceil(dataSize / 100), 10); // Minimum 10 tokens per audio
} catch (error) {
console.warn('Error calculating audio tokens:', error);
totalTokens += 10; // Fallback minimum
}
}
return totalTokens;
}
/**
* Calculate tokens for other content types (functions, files, etc.)
*/
private async calculateOtherTokens(otherContents: string[]): Promise<number> {
if (otherContents.length === 0) return 0;
try {
// Treat other content as text for token calculation
const tokenCounts =
await this.textTokenizer.calculateTokensBatch(otherContents);
return tokenCounts.reduce((sum, count) => sum + count, 0);
} catch (error) {
console.warn('Error calculating other content tokens:', error);
// Fallback: character-based estimation
const totalChars = otherContents.join('').length;
return Math.ceil(totalChars / 4);
}
}
/**
* Fallback token calculation using simple string serialization
*/
private calculateFallbackTokens(request: CountTokensParameters): number {
try {
const content = JSON.stringify(request.contents);
return Math.ceil(content.length / 4); // Rough estimate: 1 token ≈ 4 characters
} catch (error) {
console.warn('Error in fallback token calculation:', error);
return 100; // Conservative fallback
}
}
/**
* Process request contents and group by type
*/
private processAndGroupContents(request: CountTokensParameters): {
textContents: string[];
imageContents: Array<{ data: string; mimeType: string }>;
audioContents: Array<{ data: string; mimeType: string }>;
otherContents: string[];
} {
const textContents: string[] = [];
const imageContents: Array<{ data: string; mimeType: string }> = [];
const audioContents: Array<{ data: string; mimeType: string }> = [];
const otherContents: string[] = [];
if (!request.contents) {
return { textContents, imageContents, audioContents, otherContents };
}
const contents = Array.isArray(request.contents)
? request.contents
: [request.contents];
for (const content of contents) {
this.processContent(
content,
textContents,
imageContents,
audioContents,
otherContents,
);
}
return { textContents, imageContents, audioContents, otherContents };
}
/**
* Process a single content item and add to appropriate arrays
*/
private processContent(
content: Content | string | PartUnion,
textContents: string[],
imageContents: Array<{ data: string; mimeType: string }>,
audioContents: Array<{ data: string; mimeType: string }>,
otherContents: string[],
): void {
if (typeof content === 'string') {
if (content.trim()) {
textContents.push(content);
}
return;
}
if ('parts' in content && content.parts) {
for (const part of content.parts) {
this.processPart(
part,
textContents,
imageContents,
audioContents,
otherContents,
);
}
}
}
/**
* Process a single part and add to appropriate arrays
*/
private processPart(
part: Part | string,
textContents: string[],
imageContents: Array<{ data: string; mimeType: string }>,
audioContents: Array<{ data: string; mimeType: string }>,
otherContents: string[],
): void {
if (typeof part === 'string') {
if (part.trim()) {
textContents.push(part);
}
return;
}
if ('text' in part && part.text) {
textContents.push(part.text);
return;
}
if ('inlineData' in part && part.inlineData) {
const { data, mimeType } = part.inlineData;
if (mimeType && mimeType.startsWith('image/')) {
imageContents.push({ data: data || '', mimeType });
return;
}
if (mimeType && mimeType.startsWith('audio/')) {
audioContents.push({ data: data || '', mimeType });
return;
}
}
if ('fileData' in part && part.fileData) {
otherContents.push(JSON.stringify(part.fileData));
return;
}
if ('functionCall' in part && part.functionCall) {
otherContents.push(JSON.stringify(part.functionCall));
return;
}
if ('functionResponse' in part && part.functionResponse) {
otherContents.push(JSON.stringify(part.functionResponse));
return;
}
// Unknown part type - try to serialize
try {
const serialized = JSON.stringify(part);
if (serialized && serialized !== '{}') {
otherContents.push(serialized);
}
} catch (error) {
console.warn('Failed to serialize unknown part type:', error);
}
}
/**
* Dispose of resources
*/
async dispose(): Promise<void> {
try {
// Dispose of tokenizers
this.textTokenizer.dispose();
} catch (error) {
console.warn('Error disposing request tokenizer:', error);
}
}
}

View File

@@ -0,0 +1,56 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
/**
* Supported image MIME types for vision models
* These formats are supported by the vision model and can be processed by the image tokenizer
*/
export const SUPPORTED_IMAGE_MIME_TYPES = [
'image/bmp',
'image/jpeg',
'image/jpg', // Alternative MIME type for JPEG
'image/png',
'image/tiff',
'image/webp',
'image/heic',
] as const;
/**
* Type for supported image MIME types
*/
export type SupportedImageMimeType =
(typeof SUPPORTED_IMAGE_MIME_TYPES)[number];
/**
* Check if a MIME type is supported for vision processing
* @param mimeType The MIME type to check
* @returns True if the MIME type is supported
*/
export function isSupportedImageMimeType(
mimeType: string,
): mimeType is SupportedImageMimeType {
return SUPPORTED_IMAGE_MIME_TYPES.includes(
mimeType as SupportedImageMimeType,
);
}
/**
* Get a human-readable list of supported image formats
* @returns Comma-separated string of supported formats
*/
export function getSupportedImageFormatsString(): string {
return SUPPORTED_IMAGE_MIME_TYPES.map((type) =>
type.replace('image/', '').toUpperCase(),
).join(', ');
}
/**
* Get warning message for unsupported image formats
* @returns Warning message string
*/
export function getUnsupportedImageFormatWarning(): string {
return `Only the following image formats are supported: ${getSupportedImageFormatsString()}. Other formats may not work as expected.`;
}

View File

@@ -0,0 +1,347 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import { describe, it, expect, vi, beforeEach, afterEach } from 'vitest';
import { TextTokenizer } from './textTokenizer.js';
// Mock tiktoken at the top level with hoisted functions
const mockEncode = vi.hoisted(() => vi.fn());
const mockFree = vi.hoisted(() => vi.fn());
const mockGetEncoding = vi.hoisted(() => vi.fn());
vi.mock('tiktoken', () => ({
get_encoding: mockGetEncoding,
}));
describe('TextTokenizer', () => {
let tokenizer: TextTokenizer;
let consoleWarnSpy: ReturnType<typeof vi.spyOn>;
beforeEach(() => {
vi.resetAllMocks();
consoleWarnSpy = vi.spyOn(console, 'warn').mockImplementation(() => {});
// Default mock implementation
mockGetEncoding.mockReturnValue({
encode: mockEncode,
free: mockFree,
});
});
afterEach(() => {
vi.restoreAllMocks();
tokenizer?.dispose();
});
describe('constructor', () => {
it('should create tokenizer with default encoding', () => {
tokenizer = new TextTokenizer();
expect(tokenizer).toBeInstanceOf(TextTokenizer);
});
it('should create tokenizer with custom encoding', () => {
tokenizer = new TextTokenizer('gpt2');
expect(tokenizer).toBeInstanceOf(TextTokenizer);
});
});
describe('calculateTokens', () => {
beforeEach(() => {
tokenizer = new TextTokenizer();
});
it('should return 0 for empty text', async () => {
const result = await tokenizer.calculateTokens('');
expect(result).toBe(0);
});
it('should return 0 for null/undefined text', async () => {
const result1 = await tokenizer.calculateTokens(
null as unknown as string,
);
const result2 = await tokenizer.calculateTokens(
undefined as unknown as string,
);
expect(result1).toBe(0);
expect(result2).toBe(0);
});
it('should calculate tokens using tiktoken when available', async () => {
const testText = 'Hello, world!';
const mockTokens = [1, 2, 3, 4, 5]; // 5 tokens
mockEncode.mockReturnValue(mockTokens);
const result = await tokenizer.calculateTokens(testText);
expect(mockGetEncoding).toHaveBeenCalledWith('cl100k_base');
expect(mockEncode).toHaveBeenCalledWith(testText);
expect(result).toBe(5);
});
it('should use fallback calculation when tiktoken fails to load', async () => {
mockGetEncoding.mockImplementation(() => {
throw new Error('Failed to load tiktoken');
});
const testText = 'Hello, world!'; // 13 characters
const result = await tokenizer.calculateTokens(testText);
expect(consoleWarnSpy).toHaveBeenCalledWith(
'Failed to load tiktoken with encoding cl100k_base:',
expect.any(Error),
);
// Fallback: Math.ceil(13 / 4) = 4
expect(result).toBe(4);
});
it('should use fallback calculation when encoding fails', async () => {
mockEncode.mockImplementation(() => {
throw new Error('Encoding failed');
});
const testText = 'Hello, world!'; // 13 characters
const result = await tokenizer.calculateTokens(testText);
expect(consoleWarnSpy).toHaveBeenCalledWith(
'Error encoding text with tiktoken:',
expect.any(Error),
);
// Fallback: Math.ceil(13 / 4) = 4
expect(result).toBe(4);
});
it('should handle very long text', async () => {
const longText = 'a'.repeat(10000);
const mockTokens = new Array(2500); // 2500 tokens
mockEncode.mockReturnValue(mockTokens);
const result = await tokenizer.calculateTokens(longText);
expect(result).toBe(2500);
});
it('should handle unicode characters', async () => {
const unicodeText = '你好世界 🌍';
const mockTokens = [1, 2, 3, 4, 5, 6];
mockEncode.mockReturnValue(mockTokens);
const result = await tokenizer.calculateTokens(unicodeText);
expect(result).toBe(6);
});
it('should use custom encoding when specified', async () => {
tokenizer = new TextTokenizer('gpt2');
const testText = 'Hello, world!';
const mockTokens = [1, 2, 3];
mockEncode.mockReturnValue(mockTokens);
const result = await tokenizer.calculateTokens(testText);
expect(mockGetEncoding).toHaveBeenCalledWith('gpt2');
expect(result).toBe(3);
});
});
describe('calculateTokensBatch', () => {
beforeEach(() => {
tokenizer = new TextTokenizer();
});
it('should process multiple texts and return token counts', async () => {
const texts = ['Hello', 'world', 'test'];
mockEncode
.mockReturnValueOnce([1, 2]) // 2 tokens for 'Hello'
.mockReturnValueOnce([3, 4, 5]) // 3 tokens for 'world'
.mockReturnValueOnce([6]); // 1 token for 'test'
const result = await tokenizer.calculateTokensBatch(texts);
expect(result).toEqual([2, 3, 1]);
expect(mockEncode).toHaveBeenCalledTimes(3);
});
it('should handle empty array', async () => {
const result = await tokenizer.calculateTokensBatch([]);
expect(result).toEqual([]);
});
it('should handle array with empty strings', async () => {
const texts = ['', 'hello', ''];
mockEncode.mockReturnValue([1, 2, 3]); // Only called for 'hello'
const result = await tokenizer.calculateTokensBatch(texts);
expect(result).toEqual([0, 3, 0]);
expect(mockEncode).toHaveBeenCalledTimes(1);
expect(mockEncode).toHaveBeenCalledWith('hello');
});
it('should use fallback calculation when tiktoken fails to load', async () => {
mockGetEncoding.mockImplementation(() => {
throw new Error('Failed to load tiktoken');
});
const texts = ['Hello', 'world']; // 5 and 5 characters
const result = await tokenizer.calculateTokensBatch(texts);
expect(consoleWarnSpy).toHaveBeenCalledWith(
'Failed to load tiktoken with encoding cl100k_base:',
expect.any(Error),
);
// Fallback: Math.ceil(5/4) = 2 for both
expect(result).toEqual([2, 2]);
});
it('should use fallback calculation when encoding fails during batch processing', async () => {
mockEncode.mockImplementation(() => {
throw new Error('Encoding failed');
});
const texts = ['Hello', 'world']; // 5 and 5 characters
const result = await tokenizer.calculateTokensBatch(texts);
expect(consoleWarnSpy).toHaveBeenCalledWith(
'Error encoding texts with tiktoken:',
expect.any(Error),
);
// Fallback: Math.ceil(5/4) = 2 for both
expect(result).toEqual([2, 2]);
});
it('should handle null and undefined values in batch', async () => {
const texts = [null, 'hello', undefined, 'world'] as unknown as string[];
mockEncode
.mockReturnValueOnce([1, 2, 3]) // 3 tokens for 'hello'
.mockReturnValueOnce([4, 5]); // 2 tokens for 'world'
const result = await tokenizer.calculateTokensBatch(texts);
expect(result).toEqual([0, 3, 0, 2]);
});
});
describe('dispose', () => {
beforeEach(() => {
tokenizer = new TextTokenizer();
});
it('should free tiktoken encoding when disposing', async () => {
// Initialize the encoding by calling calculateTokens
await tokenizer.calculateTokens('test');
tokenizer.dispose();
expect(mockFree).toHaveBeenCalled();
});
it('should handle disposal when encoding is not initialized', () => {
expect(() => tokenizer.dispose()).not.toThrow();
expect(mockFree).not.toHaveBeenCalled();
});
it('should handle disposal when encoding is null', async () => {
// Force encoding to be null by making tiktoken fail
mockGetEncoding.mockImplementation(() => {
throw new Error('Failed to load');
});
await tokenizer.calculateTokens('test');
expect(() => tokenizer.dispose()).not.toThrow();
expect(mockFree).not.toHaveBeenCalled();
});
it('should handle errors during disposal gracefully', async () => {
await tokenizer.calculateTokens('test');
mockFree.mockImplementation(() => {
throw new Error('Free failed');
});
tokenizer.dispose();
expect(consoleWarnSpy).toHaveBeenCalledWith(
'Error freeing tiktoken encoding:',
expect.any(Error),
);
});
it('should allow multiple calls to dispose', async () => {
await tokenizer.calculateTokens('test');
tokenizer.dispose();
tokenizer.dispose(); // Second call should not throw
expect(mockFree).toHaveBeenCalledTimes(1);
});
});
describe('lazy initialization', () => {
beforeEach(() => {
tokenizer = new TextTokenizer();
});
it('should not initialize tiktoken until first use', () => {
expect(mockGetEncoding).not.toHaveBeenCalled();
});
it('should initialize tiktoken on first calculateTokens call', async () => {
await tokenizer.calculateTokens('test');
expect(mockGetEncoding).toHaveBeenCalledTimes(1);
});
it('should not reinitialize tiktoken on subsequent calls', async () => {
await tokenizer.calculateTokens('test1');
await tokenizer.calculateTokens('test2');
expect(mockGetEncoding).toHaveBeenCalledTimes(1);
});
it('should initialize tiktoken on first calculateTokensBatch call', async () => {
await tokenizer.calculateTokensBatch(['test']);
expect(mockGetEncoding).toHaveBeenCalledTimes(1);
});
});
describe('edge cases', () => {
beforeEach(() => {
tokenizer = new TextTokenizer();
});
it('should handle very short text', async () => {
const result = await tokenizer.calculateTokens('a');
if (mockGetEncoding.mock.calls.length > 0) {
// If tiktoken was called, use its result
expect(mockEncode).toHaveBeenCalledWith('a');
} else {
// If tiktoken failed, should use fallback: Math.ceil(1/4) = 1
expect(result).toBe(1);
}
});
it('should handle text with only whitespace', async () => {
const whitespaceText = ' \n\t ';
const mockTokens = [1];
mockEncode.mockReturnValue(mockTokens);
const result = await tokenizer.calculateTokens(whitespaceText);
expect(result).toBe(1);
});
it('should handle special characters and symbols', async () => {
const specialText = '!@#$%^&*()_+-=[]{}|;:,.<>?';
const mockTokens = new Array(10);
mockEncode.mockReturnValue(mockTokens);
const result = await tokenizer.calculateTokens(specialText);
expect(result).toBe(10);
});
});
});

View File

@@ -0,0 +1,97 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import type { TiktokenEncoding, Tiktoken } from 'tiktoken';
import { get_encoding } from 'tiktoken';
/**
* Text tokenizer for calculating text tokens using tiktoken
*/
export class TextTokenizer {
private encoding: Tiktoken | null = null;
private encodingName: string;
constructor(encodingName: string = 'cl100k_base') {
this.encodingName = encodingName;
}
/**
* Initialize the tokenizer (lazy loading)
*/
private async ensureEncoding(): Promise<void> {
if (this.encoding) return;
try {
// Use type assertion since we know the encoding name is valid
this.encoding = get_encoding(this.encodingName as TiktokenEncoding);
} catch (error) {
console.warn(
`Failed to load tiktoken with encoding ${this.encodingName}:`,
error,
);
this.encoding = null;
}
}
/**
* Calculate tokens for text content
*/
async calculateTokens(text: string): Promise<number> {
if (!text) return 0;
await this.ensureEncoding();
if (this.encoding) {
try {
return this.encoding.encode(text).length;
} catch (error) {
console.warn('Error encoding text with tiktoken:', error);
}
}
// Fallback: rough approximation using character count
// This is a conservative estimate: 1 token ≈ 4 characters for most languages
return Math.ceil(text.length / 4);
}
/**
* Calculate tokens for multiple text strings in parallel
*/
async calculateTokensBatch(texts: string[]): Promise<number[]> {
await this.ensureEncoding();
if (this.encoding) {
try {
return texts.map((text) => {
if (!text) return 0;
// this.encoding may be null, add a null check to satisfy lint
return this.encoding ? this.encoding.encode(text).length : 0;
});
} catch (error) {
console.warn('Error encoding texts with tiktoken:', error);
// In case of error, return fallback estimation for all texts
return texts.map((text) => Math.ceil((text || '').length / 4));
}
}
// Fallback for batch processing
return texts.map((text) => Math.ceil((text || '').length / 4));
}
/**
* Dispose of resources
*/
dispose(): void {
if (this.encoding) {
try {
this.encoding.free();
} catch (error) {
console.warn('Error freeing tiktoken encoding:', error);
}
this.encoding = null;
}
}
}

View File

@@ -0,0 +1,64 @@
/**
* @license
* Copyright 2025 Qwen
* SPDX-License-Identifier: Apache-2.0
*/
import type { CountTokensParameters } from '@google/genai';
/**
* Token calculation result for different content types
*/
export interface TokenCalculationResult {
/** Total tokens calculated */
totalTokens: number;
/** Breakdown by content type */
breakdown: {
textTokens: number;
imageTokens: number;
audioTokens: number;
otherTokens: number;
};
/** Processing time in milliseconds */
processingTime: number;
}
/**
* Configuration for token calculation
*/
export interface TokenizerConfig {
/** Custom text tokenizer encoding (defaults to cl100k_base) */
textEncoding?: string;
}
/**
* Image metadata extracted from base64 data
*/
export interface ImageMetadata {
/** Image width in pixels */
width: number;
/** Image height in pixels */
height: number;
/** MIME type of the image */
mimeType: string;
/** Size of the base64 data in bytes */
dataSize: number;
}
/**
* Request tokenizer interface
*/
export interface RequestTokenizer {
/**
* Calculate tokens for a request
*/
calculateTokens(
request: CountTokensParameters,
config?: TokenizerConfig,
): Promise<TokenCalculationResult>;
/**
* Dispose of resources (worker threads, etc.)
*/
dispose(): Promise<void>;
}