mirror of
https://github.com/QwenLM/qwen-code.git
synced 2025-12-19 09:33:53 +00:00
271 lines
8.5 KiB
TypeScript
271 lines
8.5 KiB
TypeScript
/**
|
|
* @license
|
|
* Copyright 2025 Qwen
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
import {
|
|
describe,
|
|
it,
|
|
expect,
|
|
vi,
|
|
beforeEach,
|
|
type Mock,
|
|
afterEach,
|
|
} from 'vitest';
|
|
import { type Content, GoogleGenAI, Models } from '@google/genai';
|
|
import { DEFAULT_QWEN_MODEL } from '../config/models.js';
|
|
import { GeminiClient } from '../core/client.js';
|
|
import { Config } from '../config/config.js';
|
|
import {
|
|
subagentGenerator,
|
|
type SubagentGeneratedContent,
|
|
} from './subagentGenerator.js';
|
|
|
|
// Mock GeminiClient and Config constructor
|
|
vi.mock('../core/client.js');
|
|
vi.mock('../config/config.js');
|
|
|
|
// Define mocks for GoogleGenAI and Models instances that will be used across tests
|
|
const mockModelsInstance = {
|
|
generateContent: vi.fn(),
|
|
generateContentStream: vi.fn(),
|
|
countTokens: vi.fn(),
|
|
embedContent: vi.fn(),
|
|
batchEmbedContents: vi.fn(),
|
|
} as unknown as Models;
|
|
|
|
const mockGoogleGenAIInstance = {
|
|
getGenerativeModel: vi.fn().mockReturnValue(mockModelsInstance),
|
|
} as unknown as GoogleGenAI;
|
|
|
|
vi.mock('@google/genai', async () => {
|
|
const actualGenAI =
|
|
await vi.importActual<typeof import('@google/genai')>('@google/genai');
|
|
return {
|
|
...actualGenAI,
|
|
GoogleGenAI: vi.fn(() => mockGoogleGenAIInstance),
|
|
};
|
|
});
|
|
|
|
describe('subagentGenerator', () => {
|
|
let mockGeminiClient: GeminiClient;
|
|
let MockConfig: Mock;
|
|
const abortSignal = new AbortController().signal;
|
|
|
|
beforeEach(() => {
|
|
MockConfig = vi.mocked(Config);
|
|
const mockConfigInstance = new MockConfig(
|
|
'test-api-key',
|
|
'gemini-pro',
|
|
false,
|
|
'.',
|
|
false,
|
|
undefined,
|
|
false,
|
|
undefined,
|
|
undefined,
|
|
undefined,
|
|
);
|
|
|
|
mockGeminiClient = new GeminiClient(mockConfigInstance);
|
|
|
|
// Reset mocks before each test to ensure test isolation
|
|
vi.mocked(mockModelsInstance.generateContent).mockReset();
|
|
vi.mocked(mockModelsInstance.generateContentStream).mockReset();
|
|
});
|
|
|
|
afterEach(() => {
|
|
vi.clearAllMocks();
|
|
});
|
|
|
|
it('should throw error for empty user description', async () => {
|
|
await expect(
|
|
subagentGenerator('', mockGeminiClient, abortSignal),
|
|
).rejects.toThrow('User description cannot be empty');
|
|
|
|
await expect(
|
|
subagentGenerator(' ', mockGeminiClient, abortSignal),
|
|
).rejects.toThrow('User description cannot be empty');
|
|
|
|
expect(mockGeminiClient.generateJson).not.toHaveBeenCalled();
|
|
});
|
|
|
|
it('should successfully generate content with valid LLM response', async () => {
|
|
const userDescription = 'help with code reviews and suggestions';
|
|
const mockApiResponse: SubagentGeneratedContent = {
|
|
name: 'code-review-assistant',
|
|
description:
|
|
'A specialized subagent that helps with code reviews and provides improvement suggestions.',
|
|
systemPrompt:
|
|
'You are a code review expert. Analyze code for best practices, bugs, and improvements.',
|
|
};
|
|
|
|
(mockGeminiClient.generateJson as Mock).mockResolvedValue(mockApiResponse);
|
|
|
|
const result = await subagentGenerator(
|
|
userDescription,
|
|
mockGeminiClient,
|
|
abortSignal,
|
|
);
|
|
|
|
expect(result).toEqual(mockApiResponse);
|
|
expect(mockGeminiClient.generateJson).toHaveBeenCalledTimes(1);
|
|
|
|
// Verify the call parameters
|
|
const generateJsonCall = (mockGeminiClient.generateJson as Mock).mock
|
|
.calls[0];
|
|
const contents = generateJsonCall[0] as Content[];
|
|
|
|
// Should have 1 user message with the query
|
|
expect(contents).toHaveLength(1);
|
|
expect(contents[0]?.role).toBe('user');
|
|
expect(contents[0]?.parts?.[0]?.text).toContain(
|
|
`Create an agent configuration based on this request: "${userDescription}"`,
|
|
);
|
|
|
|
// Check that system prompt is passed in the config parameter
|
|
expect(generateJsonCall[2]).toBe(abortSignal);
|
|
expect(generateJsonCall[3]).toBe(DEFAULT_QWEN_MODEL);
|
|
expect(generateJsonCall[4]).toEqual(
|
|
expect.objectContaining({
|
|
systemInstruction: expect.stringContaining(
|
|
'You are an elite AI agent architect',
|
|
),
|
|
}),
|
|
);
|
|
});
|
|
|
|
it('should throw error when LLM response is missing required fields', async () => {
|
|
const userDescription = 'help with documentation';
|
|
const incompleteResponse = {
|
|
name: 'doc-helper',
|
|
description: 'Helps with documentation',
|
|
// Missing systemPrompt
|
|
};
|
|
|
|
(mockGeminiClient.generateJson as Mock).mockResolvedValue(
|
|
incompleteResponse,
|
|
);
|
|
|
|
await expect(
|
|
subagentGenerator(userDescription, mockGeminiClient, abortSignal),
|
|
).rejects.toThrow('Invalid response from LLM: missing required fields');
|
|
|
|
expect(mockGeminiClient.generateJson).toHaveBeenCalledTimes(1);
|
|
});
|
|
|
|
it('should throw error when LLM response has empty fields', async () => {
|
|
const userDescription = 'database optimization';
|
|
const emptyFieldsResponse = {
|
|
name: '',
|
|
description: 'Helps with database optimization',
|
|
systemPrompt: 'You are a database expert.',
|
|
};
|
|
|
|
(mockGeminiClient.generateJson as Mock).mockResolvedValue(
|
|
emptyFieldsResponse,
|
|
);
|
|
|
|
await expect(
|
|
subagentGenerator(userDescription, mockGeminiClient, abortSignal),
|
|
).rejects.toThrow('Invalid response from LLM: missing required fields');
|
|
});
|
|
|
|
it('should throw error when generateJson throws an error', async () => {
|
|
const userDescription = 'testing automation';
|
|
(mockGeminiClient.generateJson as Mock).mockRejectedValue(
|
|
new Error('API Error'),
|
|
);
|
|
|
|
await expect(
|
|
subagentGenerator(userDescription, mockGeminiClient, abortSignal),
|
|
).rejects.toThrow('API Error');
|
|
});
|
|
|
|
it('should call generateJson with correct schema and model', async () => {
|
|
const userDescription = 'data analysis';
|
|
const mockResponse: SubagentGeneratedContent = {
|
|
name: 'data-analyst',
|
|
description: 'Analyzes data and provides insights.',
|
|
systemPrompt: 'You are a data analysis expert.',
|
|
};
|
|
|
|
(mockGeminiClient.generateJson as Mock).mockResolvedValue(mockResponse);
|
|
|
|
await subagentGenerator(userDescription, mockGeminiClient, abortSignal);
|
|
|
|
expect(mockGeminiClient.generateJson).toHaveBeenCalledWith(
|
|
expect.any(Array),
|
|
expect.objectContaining({
|
|
type: 'object',
|
|
properties: expect.objectContaining({
|
|
name: expect.objectContaining({ type: 'string' }),
|
|
description: expect.objectContaining({ type: 'string' }),
|
|
systemPrompt: expect.objectContaining({ type: 'string' }),
|
|
}),
|
|
required: ['name', 'description', 'systemPrompt'],
|
|
}),
|
|
abortSignal,
|
|
DEFAULT_QWEN_MODEL,
|
|
expect.objectContaining({
|
|
systemInstruction: expect.stringContaining(
|
|
'You are an elite AI agent architect',
|
|
),
|
|
}),
|
|
);
|
|
});
|
|
|
|
it('should include user description in the prompt', async () => {
|
|
const userDescription = 'machine learning model training';
|
|
const mockResponse: SubagentGeneratedContent = {
|
|
name: 'ml-trainer',
|
|
description: 'Trains machine learning models.',
|
|
systemPrompt: 'You are an ML expert.',
|
|
};
|
|
|
|
(mockGeminiClient.generateJson as Mock).mockResolvedValue(mockResponse);
|
|
|
|
await subagentGenerator(userDescription, mockGeminiClient, abortSignal);
|
|
|
|
const generateJsonCall = (mockGeminiClient.generateJson as Mock).mock
|
|
.calls[0];
|
|
const contents = generateJsonCall[0] as Content[];
|
|
|
|
// Check user query (only message)
|
|
expect(contents).toHaveLength(1);
|
|
const userQueryContent = contents[0]?.parts?.[0]?.text;
|
|
expect(userQueryContent).toContain(userDescription);
|
|
expect(userQueryContent).toContain(
|
|
'Create an agent configuration based on this request:',
|
|
);
|
|
|
|
// Check that system prompt is passed in the config parameter
|
|
expect(generateJsonCall[4]).toEqual(
|
|
expect.objectContaining({
|
|
systemInstruction: expect.stringContaining(
|
|
'You are an elite AI agent architect',
|
|
),
|
|
}),
|
|
);
|
|
});
|
|
|
|
it('should throw error for null response from generateJson', async () => {
|
|
const userDescription = 'security auditing';
|
|
(mockGeminiClient.generateJson as Mock).mockResolvedValue(null);
|
|
|
|
await expect(
|
|
subagentGenerator(userDescription, mockGeminiClient, abortSignal),
|
|
).rejects.toThrow('Invalid response from LLM: missing required fields');
|
|
});
|
|
|
|
it('should throw error for undefined response from generateJson', async () => {
|
|
const userDescription = 'api documentation';
|
|
(mockGeminiClient.generateJson as Mock).mockResolvedValue(undefined);
|
|
|
|
await expect(
|
|
subagentGenerator(userDescription, mockGeminiClient, abortSignal),
|
|
).rejects.toThrow('Invalid response from LLM: missing required fields');
|
|
});
|
|
});
|