mirror of
https://github.com/QwenLM/qwen-code.git
synced 2026-01-21 08:16:21 +00:00
Compare commits
1 Commits
chore/bump
...
feat/multi
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
b9a0d904de |
2
.gitignore
vendored
2
.gitignore
vendored
@@ -12,7 +12,7 @@
|
||||
!.gemini/config.yaml
|
||||
!.gemini/commands/
|
||||
|
||||
# Note: .gemini-clipboard/ is NOT in gitignore so Gemini can access pasted images
|
||||
# Note: .qwen-clipboard/ is NOT in gitignore so Gemini can access pasted images
|
||||
|
||||
# Dependency directory
|
||||
node_modules
|
||||
|
||||
12
package-lock.json
generated
12
package-lock.json
generated
@@ -1,12 +1,12 @@
|
||||
{
|
||||
"name": "@qwen-code/qwen-code",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"lockfileVersion": 3,
|
||||
"requires": true,
|
||||
"packages": {
|
||||
"": {
|
||||
"name": "@qwen-code/qwen-code",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"workspaces": [
|
||||
"packages/*"
|
||||
],
|
||||
@@ -17310,7 +17310,7 @@
|
||||
},
|
||||
"packages/cli": {
|
||||
"name": "@qwen-code/qwen-code",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"dependencies": {
|
||||
"@google/genai": "1.30.0",
|
||||
"@iarna/toml": "^2.2.5",
|
||||
@@ -17947,7 +17947,7 @@
|
||||
},
|
||||
"packages/core": {
|
||||
"name": "@qwen-code/qwen-code-core",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"hasInstallScript": true,
|
||||
"dependencies": {
|
||||
"@anthropic-ai/sdk": "^0.36.1",
|
||||
@@ -21408,7 +21408,7 @@
|
||||
},
|
||||
"packages/test-utils": {
|
||||
"name": "@qwen-code/qwen-code-test-utils",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"dev": true,
|
||||
"license": "Apache-2.0",
|
||||
"devDependencies": {
|
||||
@@ -21420,7 +21420,7 @@
|
||||
},
|
||||
"packages/vscode-ide-companion": {
|
||||
"name": "qwen-code-vscode-ide-companion",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"license": "LICENSE",
|
||||
"dependencies": {
|
||||
"@modelcontextprotocol/sdk": "^1.25.1",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@qwen-code/qwen-code",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"engines": {
|
||||
"node": ">=20.0.0"
|
||||
},
|
||||
@@ -13,7 +13,7 @@
|
||||
"url": "git+https://github.com/QwenLM/qwen-code.git"
|
||||
},
|
||||
"config": {
|
||||
"sandboxImageUri": "ghcr.io/qwenlm/qwen-code:0.8.0"
|
||||
"sandboxImageUri": "ghcr.io/qwenlm/qwen-code:0.7.1"
|
||||
},
|
||||
"scripts": {
|
||||
"start": "cross-env node scripts/start.js",
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@qwen-code/qwen-code",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"description": "Qwen Code",
|
||||
"repository": {
|
||||
"type": "git",
|
||||
@@ -33,7 +33,7 @@
|
||||
"dist"
|
||||
],
|
||||
"config": {
|
||||
"sandboxImageUri": "ghcr.io/qwenlm/qwen-code:0.8.0"
|
||||
"sandboxImageUri": "ghcr.io/qwenlm/qwen-code:0.7.1"
|
||||
},
|
||||
"dependencies": {
|
||||
"@google/genai": "1.30.0",
|
||||
|
||||
@@ -376,7 +376,7 @@ describe('InputPrompt', () => {
|
||||
it('should handle Ctrl+V when clipboard has an image', async () => {
|
||||
vi.mocked(clipboardUtils.clipboardHasImage).mockResolvedValue(true);
|
||||
vi.mocked(clipboardUtils.saveClipboardImage).mockResolvedValue(
|
||||
'/test/.gemini-clipboard/clipboard-123.png',
|
||||
'/test/.qwen-clipboard/clipboard-123.png',
|
||||
);
|
||||
|
||||
const { stdin, unmount } = renderWithProviders(
|
||||
@@ -436,7 +436,7 @@ describe('InputPrompt', () => {
|
||||
it('should insert image path at cursor position with proper spacing', async () => {
|
||||
const imagePath = path.join(
|
||||
'test',
|
||||
'.gemini-clipboard',
|
||||
'.qwen-clipboard',
|
||||
'clipboard-456.png',
|
||||
);
|
||||
vi.mocked(clipboardUtils.clipboardHasImage).mockResolvedValue(true);
|
||||
|
||||
@@ -44,7 +44,7 @@ export async function saveClipboardImage(
|
||||
// Create a temporary directory for clipboard images within the target directory
|
||||
// This avoids security restrictions on paths outside the target directory
|
||||
const baseDir = targetDir || process.cwd();
|
||||
const tempDir = path.join(baseDir, '.gemini-clipboard');
|
||||
const tempDir = path.join(baseDir, '.qwen-clipboard');
|
||||
await fs.mkdir(tempDir, { recursive: true });
|
||||
|
||||
// Generate a unique filename with timestamp
|
||||
@@ -120,7 +120,7 @@ export async function cleanupOldClipboardImages(
|
||||
): Promise<void> {
|
||||
try {
|
||||
const baseDir = targetDir || process.cwd();
|
||||
const tempDir = path.join(baseDir, '.gemini-clipboard');
|
||||
const tempDir = path.join(baseDir, '.qwen-clipboard');
|
||||
const files = await fs.readdir(tempDir);
|
||||
const oneHourAgo = Date.now() - 60 * 60 * 1000;
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@qwen-code/qwen-code-core",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"description": "Qwen Code Core",
|
||||
"repository": {
|
||||
"type": "git",
|
||||
|
||||
@@ -208,6 +208,238 @@ describe('AnthropicContentConverter', () => {
|
||||
],
|
||||
});
|
||||
});
|
||||
|
||||
it('converts function response with inlineData image parts into tool_result with images', () => {
|
||||
const { messages } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call-1',
|
||||
name: 'Read',
|
||||
response: { output: 'Image content' },
|
||||
parts: [
|
||||
{
|
||||
inlineData: {
|
||||
mimeType: 'image/png',
|
||||
data: 'base64encodeddata',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
expect(messages).toEqual([
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'tool_result',
|
||||
tool_use_id: 'call-1',
|
||||
content: [
|
||||
{ type: 'text', text: 'Image content' },
|
||||
{
|
||||
type: 'image',
|
||||
source: {
|
||||
type: 'base64',
|
||||
media_type: 'image/png',
|
||||
data: 'base64encodeddata',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('renders non-image inlineData as a text block (avoids invalid image media_type)', () => {
|
||||
const { messages } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call-1',
|
||||
name: 'Read',
|
||||
response: { output: 'Audio content' },
|
||||
parts: [
|
||||
{
|
||||
inlineData: {
|
||||
mimeType: 'audio/mpeg',
|
||||
data: 'base64encodedaudiodata',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
expect(messages).toHaveLength(1);
|
||||
expect(messages[0]?.role).toBe('user');
|
||||
|
||||
const toolResult = messages[0]?.content?.[0] as {
|
||||
type: string;
|
||||
content: Array<{ type: string; text?: string }>;
|
||||
};
|
||||
expect(toolResult.type).toBe('tool_result');
|
||||
expect(Array.isArray(toolResult.content)).toBe(true);
|
||||
expect(toolResult.content[0]).toEqual({
|
||||
type: 'text',
|
||||
text: 'Audio content',
|
||||
});
|
||||
expect(toolResult.content[1]?.type).toBe('text');
|
||||
expect(toolResult.content[1]?.text).toContain(
|
||||
'Unsupported inline media type for Anthropic',
|
||||
);
|
||||
expect(toolResult.content[1]?.text).toContain('audio/mpeg');
|
||||
});
|
||||
|
||||
it('converts fileData with PDF into document block', () => {
|
||||
const { messages } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call-1',
|
||||
name: 'Read',
|
||||
response: { output: 'PDF content' },
|
||||
parts: [
|
||||
{
|
||||
fileData: {
|
||||
mimeType: 'application/pdf',
|
||||
fileUri: 'pdfbase64data',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
expect(messages).toEqual([
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'tool_result',
|
||||
tool_use_id: 'call-1',
|
||||
content: [
|
||||
{ type: 'text', text: 'PDF content' },
|
||||
{
|
||||
type: 'document',
|
||||
source: {
|
||||
type: 'base64',
|
||||
media_type: 'application/pdf',
|
||||
data: 'pdfbase64data',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('associates each image with its preceding functionResponse', () => {
|
||||
const { messages } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
// Tool 1 with image 1
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call-1',
|
||||
name: 'Read',
|
||||
response: { output: 'File 1' },
|
||||
parts: [
|
||||
{
|
||||
inlineData: {
|
||||
mimeType: 'image/png',
|
||||
data: 'image1data',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
// Tool 2 with image 2
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call-2',
|
||||
name: 'Read',
|
||||
response: { output: 'File 2' },
|
||||
parts: [
|
||||
{
|
||||
inlineData: {
|
||||
mimeType: 'image/jpeg',
|
||||
data: 'image2data',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
// Multiple tool_result blocks are emitted in order
|
||||
expect(messages).toHaveLength(1);
|
||||
expect(messages[0]).toEqual({
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'tool_result',
|
||||
tool_use_id: 'call-1',
|
||||
content: [
|
||||
{ type: 'text', text: 'File 1' },
|
||||
{
|
||||
type: 'image',
|
||||
source: {
|
||||
type: 'base64',
|
||||
media_type: 'image/png',
|
||||
data: 'image1data',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
type: 'tool_result',
|
||||
tool_use_id: 'call-2',
|
||||
content: [
|
||||
{ type: 'text', text: 'File 2' },
|
||||
{
|
||||
type: 'image',
|
||||
source: {
|
||||
type: 'base64',
|
||||
media_type: 'image/jpeg',
|
||||
data: 'image2data',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
describe('convertGeminiToolsToAnthropic', () => {
|
||||
|
||||
@@ -10,7 +10,6 @@ import type {
|
||||
Content,
|
||||
ContentListUnion,
|
||||
ContentUnion,
|
||||
FunctionCall,
|
||||
FunctionResponse,
|
||||
GenerateContentParameters,
|
||||
Part,
|
||||
@@ -30,15 +29,6 @@ type AnthropicMessageParam = Anthropic.MessageParam;
|
||||
type AnthropicToolParam = Anthropic.Tool;
|
||||
type AnthropicContentBlockParam = Anthropic.ContentBlockParam;
|
||||
|
||||
type ThoughtPart = { text: string; signature?: string };
|
||||
|
||||
interface ParsedParts {
|
||||
thoughtParts: ThoughtPart[];
|
||||
contentParts: string[];
|
||||
functionCalls: FunctionCall[];
|
||||
functionResponses: FunctionResponse[];
|
||||
}
|
||||
|
||||
export class AnthropicContentConverter {
|
||||
private model: string;
|
||||
private schemaCompliance: SchemaComplianceMode;
|
||||
@@ -228,127 +218,161 @@ export class AnthropicContentConverter {
|
||||
}
|
||||
|
||||
if (!this.isContentObject(content)) return;
|
||||
|
||||
const parsed = this.parseParts(content.parts || []);
|
||||
|
||||
if (parsed.functionResponses.length > 0) {
|
||||
for (const response of parsed.functionResponses) {
|
||||
messages.push({
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'tool_result',
|
||||
tool_use_id: response.id || '',
|
||||
content: this.extractFunctionResponseContent(response.response),
|
||||
},
|
||||
],
|
||||
});
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (content.role === 'model' && parsed.functionCalls.length > 0) {
|
||||
const thinkingBlocks: AnthropicContentBlockParam[] =
|
||||
parsed.thoughtParts.map((part) => {
|
||||
const thinkingBlock: unknown = {
|
||||
type: 'thinking',
|
||||
thinking: part.text,
|
||||
};
|
||||
if (part.signature) {
|
||||
(thinkingBlock as { signature?: string }).signature =
|
||||
part.signature;
|
||||
}
|
||||
return thinkingBlock as AnthropicContentBlockParam;
|
||||
});
|
||||
const toolUses: AnthropicContentBlockParam[] = parsed.functionCalls.map(
|
||||
(call, index) => ({
|
||||
type: 'tool_use',
|
||||
id: call.id || `tool_${index}`,
|
||||
name: call.name || '',
|
||||
input: (call.args as Record<string, unknown>) || {},
|
||||
}),
|
||||
);
|
||||
|
||||
const textBlocks: AnthropicContentBlockParam[] = parsed.contentParts.map(
|
||||
(text) => ({
|
||||
type: 'text' as const,
|
||||
text,
|
||||
}),
|
||||
);
|
||||
|
||||
messages.push({
|
||||
role: 'assistant',
|
||||
content: [...thinkingBlocks, ...textBlocks, ...toolUses],
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const parts = content.parts || [];
|
||||
const role = content.role === 'model' ? 'assistant' : 'user';
|
||||
const thinkingBlocks: AnthropicContentBlockParam[] =
|
||||
role === 'assistant'
|
||||
? parsed.thoughtParts.map((part) => {
|
||||
const thinkingBlock: unknown = {
|
||||
type: 'thinking',
|
||||
thinking: part.text,
|
||||
};
|
||||
if (part.signature) {
|
||||
(thinkingBlock as { signature?: string }).signature =
|
||||
part.signature;
|
||||
}
|
||||
return thinkingBlock as AnthropicContentBlockParam;
|
||||
})
|
||||
: [];
|
||||
const textBlocks: AnthropicContentBlockParam[] = [
|
||||
...thinkingBlocks,
|
||||
...parsed.contentParts.map((text) => ({
|
||||
type: 'text' as const,
|
||||
text,
|
||||
})),
|
||||
];
|
||||
if (textBlocks.length > 0) {
|
||||
messages.push({ role, content: textBlocks });
|
||||
}
|
||||
}
|
||||
|
||||
private parseParts(parts: Part[]): ParsedParts {
|
||||
const thoughtParts: ThoughtPart[] = [];
|
||||
const contentParts: string[] = [];
|
||||
const functionCalls: FunctionCall[] = [];
|
||||
const functionResponses: FunctionResponse[] = [];
|
||||
const contentBlocks: AnthropicContentBlockParam[] = [];
|
||||
let toolCallIndex = 0;
|
||||
|
||||
for (const part of parts) {
|
||||
if (typeof part === 'string') {
|
||||
contentParts.push(part);
|
||||
} else if (
|
||||
'text' in part &&
|
||||
part.text &&
|
||||
!('thought' in part && part.thought)
|
||||
) {
|
||||
contentParts.push(part.text);
|
||||
} else if ('text' in part && 'thought' in part && part.thought) {
|
||||
thoughtParts.push({
|
||||
text: part.text || '',
|
||||
signature:
|
||||
contentBlocks.push({ type: 'text', text: part });
|
||||
continue;
|
||||
}
|
||||
|
||||
if ('text' in part && 'thought' in part && part.thought) {
|
||||
if (role === 'assistant') {
|
||||
const thinkingBlock: unknown = {
|
||||
type: 'thinking',
|
||||
thinking: part.text || '',
|
||||
};
|
||||
if (
|
||||
'thoughtSignature' in part &&
|
||||
typeof part.thoughtSignature === 'string'
|
||||
? part.thoughtSignature
|
||||
: undefined,
|
||||
});
|
||||
} else if ('functionCall' in part && part.functionCall) {
|
||||
functionCalls.push(part.functionCall);
|
||||
} else if ('functionResponse' in part && part.functionResponse) {
|
||||
functionResponses.push(part.functionResponse);
|
||||
) {
|
||||
(thinkingBlock as { signature?: string }).signature =
|
||||
part.thoughtSignature;
|
||||
}
|
||||
contentBlocks.push(thinkingBlock as AnthropicContentBlockParam);
|
||||
}
|
||||
}
|
||||
|
||||
if ('text' in part && part.text && !('thought' in part && part.thought)) {
|
||||
contentBlocks.push({ type: 'text', text: part.text });
|
||||
}
|
||||
|
||||
const mediaBlock = this.createMediaBlockFromPart(part);
|
||||
if (mediaBlock) {
|
||||
contentBlocks.push(mediaBlock);
|
||||
}
|
||||
|
||||
if ('functionCall' in part && part.functionCall) {
|
||||
if (role === 'assistant') {
|
||||
contentBlocks.push({
|
||||
type: 'tool_use',
|
||||
id: part.functionCall.id || `tool_${toolCallIndex}`,
|
||||
name: part.functionCall.name || '',
|
||||
input: (part.functionCall.args as Record<string, unknown>) || {},
|
||||
});
|
||||
toolCallIndex += 1;
|
||||
}
|
||||
}
|
||||
|
||||
if (part.functionResponse) {
|
||||
const toolResultBlock = this.createToolResultBlock(
|
||||
part.functionResponse,
|
||||
);
|
||||
if (toolResultBlock && role === 'user') {
|
||||
contentBlocks.push(toolResultBlock);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (contentBlocks.length > 0) {
|
||||
messages.push({ role, content: contentBlocks });
|
||||
}
|
||||
}
|
||||
|
||||
private createToolResultBlock(
|
||||
response: FunctionResponse,
|
||||
): Anthropic.ToolResultBlockParam | null {
|
||||
const textContent = this.extractFunctionResponseContent(response.response);
|
||||
|
||||
type ToolResultContent = Anthropic.ToolResultBlockParam['content'];
|
||||
const partBlocks: AnthropicContentBlockParam[] = [];
|
||||
|
||||
for (const part of response.parts || []) {
|
||||
const block = this.createMediaBlockFromPart(part);
|
||||
if (block) {
|
||||
partBlocks.push(block);
|
||||
}
|
||||
}
|
||||
|
||||
let content: ToolResultContent;
|
||||
if (partBlocks.length > 0) {
|
||||
const blocks: AnthropicContentBlockParam[] = [];
|
||||
if (textContent) {
|
||||
blocks.push({ type: 'text', text: textContent });
|
||||
}
|
||||
blocks.push(...partBlocks);
|
||||
content = blocks as unknown as ToolResultContent;
|
||||
} else {
|
||||
content = textContent;
|
||||
}
|
||||
|
||||
return {
|
||||
thoughtParts,
|
||||
contentParts,
|
||||
functionCalls,
|
||||
functionResponses,
|
||||
type: 'tool_result',
|
||||
tool_use_id: response.id || '',
|
||||
content,
|
||||
};
|
||||
}
|
||||
|
||||
private createMediaBlockFromPart(
|
||||
part: Part,
|
||||
): AnthropicContentBlockParam | null {
|
||||
if (part.inlineData?.mimeType && part.inlineData?.data) {
|
||||
if (!this.isSupportedAnthropicImageMimeType(part.inlineData.mimeType)) {
|
||||
const displayName = part.inlineData.displayName ?? '';
|
||||
return {
|
||||
type: 'text',
|
||||
text: `Unsupported inline media type for Anthropic: ${part.inlineData.mimeType}${displayName}.`,
|
||||
};
|
||||
}
|
||||
return {
|
||||
type: 'image',
|
||||
source: {
|
||||
type: 'base64',
|
||||
media_type: part.inlineData.mimeType as
|
||||
| 'image/jpeg'
|
||||
| 'image/png'
|
||||
| 'image/gif'
|
||||
| 'image/webp',
|
||||
data: part.inlineData.data,
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
if (part.fileData?.mimeType && part.fileData?.fileUri) {
|
||||
if (part.fileData.mimeType !== 'application/pdf') {
|
||||
const displayName = part.fileData.displayName ?? '';
|
||||
return {
|
||||
type: 'text',
|
||||
text: `Unsupported file media for Anthropic: ${part.fileData.mimeType}${displayName}`,
|
||||
};
|
||||
}
|
||||
return {
|
||||
type: 'document',
|
||||
source: {
|
||||
type: 'base64',
|
||||
media_type: part.fileData.mimeType as 'application/pdf',
|
||||
data: part.fileData.fileUri,
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
private isSupportedAnthropicImageMimeType(
|
||||
mimeType: string,
|
||||
): mimeType is 'image/jpeg' | 'image/png' | 'image/gif' | 'image/webp' {
|
||||
return (
|
||||
mimeType === 'image/jpeg' ||
|
||||
mimeType === 'image/png' ||
|
||||
mimeType === 'image/gif' ||
|
||||
mimeType === 'image/webp'
|
||||
);
|
||||
}
|
||||
|
||||
private extractTextFromContentUnion(contentUnion: unknown): string {
|
||||
if (typeof contentUnion === 'string') {
|
||||
return contentUnion;
|
||||
|
||||
@@ -800,11 +800,11 @@ describe('convertToFunctionResponse', () => {
|
||||
name: toolName,
|
||||
id: callId,
|
||||
response: {
|
||||
output: 'Binary content of type image/png was processed.',
|
||||
output: '',
|
||||
},
|
||||
parts: [{ inlineData: { mimeType: 'image/png', data: 'base64...' } }],
|
||||
},
|
||||
},
|
||||
llmContent,
|
||||
]);
|
||||
});
|
||||
|
||||
@@ -819,11 +819,15 @@ describe('convertToFunctionResponse', () => {
|
||||
name: toolName,
|
||||
id: callId,
|
||||
response: {
|
||||
output: 'Binary content of type application/pdf was processed.',
|
||||
output: '',
|
||||
},
|
||||
parts: [
|
||||
{
|
||||
fileData: { mimeType: 'application/pdf', fileUri: 'gs://...' },
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
llmContent,
|
||||
]);
|
||||
});
|
||||
|
||||
@@ -857,11 +861,13 @@ describe('convertToFunctionResponse', () => {
|
||||
name: toolName,
|
||||
id: callId,
|
||||
response: {
|
||||
output: 'Binary content of type image/gif was processed.',
|
||||
output: '',
|
||||
},
|
||||
parts: [
|
||||
{ inlineData: { mimeType: 'image/gif', data: 'gifdata...' } },
|
||||
],
|
||||
},
|
||||
},
|
||||
...llmContent,
|
||||
]);
|
||||
});
|
||||
|
||||
|
||||
@@ -30,7 +30,12 @@ import {
|
||||
ToolOutputTruncatedEvent,
|
||||
InputFormat,
|
||||
} from '../index.js';
|
||||
import type { Part, PartListUnion } from '@google/genai';
|
||||
import type {
|
||||
FunctionResponse,
|
||||
FunctionResponsePart,
|
||||
Part,
|
||||
PartListUnion,
|
||||
} from '@google/genai';
|
||||
import { getResponseTextFromParts } from '../utils/generateContentResponseUtilities.js';
|
||||
import type { ModifyContext } from '../tools/modifiable-tool.js';
|
||||
import {
|
||||
@@ -151,13 +156,17 @@ function createFunctionResponsePart(
|
||||
callId: string,
|
||||
toolName: string,
|
||||
output: string,
|
||||
mediaParts?: FunctionResponsePart[],
|
||||
): Part {
|
||||
const functionResponse: FunctionResponse = {
|
||||
id: callId,
|
||||
name: toolName,
|
||||
response: { output },
|
||||
...(mediaParts && mediaParts.length > 0 ? { parts: mediaParts } : {}),
|
||||
};
|
||||
|
||||
return {
|
||||
functionResponse: {
|
||||
id: callId,
|
||||
name: toolName,
|
||||
response: { output },
|
||||
},
|
||||
functionResponse,
|
||||
};
|
||||
}
|
||||
|
||||
@@ -198,16 +207,21 @@ export function convertToFunctionResponse(
|
||||
}
|
||||
|
||||
if (contentToProcess.inlineData || contentToProcess.fileData) {
|
||||
const mimeType =
|
||||
contentToProcess.inlineData?.mimeType ||
|
||||
contentToProcess.fileData?.mimeType ||
|
||||
'unknown';
|
||||
const mediaParts: FunctionResponsePart[] = [];
|
||||
if (contentToProcess.inlineData) {
|
||||
mediaParts.push({ inlineData: contentToProcess.inlineData });
|
||||
}
|
||||
if (contentToProcess.fileData) {
|
||||
mediaParts.push({ fileData: contentToProcess.fileData });
|
||||
}
|
||||
|
||||
const functionResponse = createFunctionResponsePart(
|
||||
callId,
|
||||
toolName,
|
||||
`Binary content of type ${mimeType} was processed.`,
|
||||
'',
|
||||
mediaParts,
|
||||
);
|
||||
return [functionResponse, contentToProcess];
|
||||
return [functionResponse];
|
||||
}
|
||||
|
||||
if (contentToProcess.text !== undefined) {
|
||||
|
||||
@@ -309,11 +309,13 @@ describe('executeToolCall', () => {
|
||||
name: 'testTool',
|
||||
id: 'call6',
|
||||
response: {
|
||||
output: 'Binary content of type image/png was processed.',
|
||||
output: '',
|
||||
},
|
||||
parts: [
|
||||
{ inlineData: { mimeType: 'image/png', data: 'base64data' } },
|
||||
],
|
||||
},
|
||||
},
|
||||
imageDataPart,
|
||||
],
|
||||
});
|
||||
});
|
||||
|
||||
@@ -122,7 +122,13 @@ describe('OpenAIContentConverter', () => {
|
||||
const toolMessage = messages.find((message) => message.role === 'tool');
|
||||
|
||||
expect(toolMessage).toBeDefined();
|
||||
expect(toolMessage?.content).toBe('Raw output text');
|
||||
expect(Array.isArray(toolMessage?.content)).toBe(true);
|
||||
const contentArray = toolMessage?.content as Array<{
|
||||
type: string;
|
||||
text?: string;
|
||||
}>;
|
||||
expect(contentArray[0].type).toBe('text');
|
||||
expect(contentArray[0].text).toBe('Raw output text');
|
||||
});
|
||||
|
||||
it('should prioritize error field when present', () => {
|
||||
@@ -134,7 +140,13 @@ describe('OpenAIContentConverter', () => {
|
||||
const toolMessage = messages.find((message) => message.role === 'tool');
|
||||
|
||||
expect(toolMessage).toBeDefined();
|
||||
expect(toolMessage?.content).toBe('Command failed');
|
||||
expect(Array.isArray(toolMessage?.content)).toBe(true);
|
||||
const contentArray = toolMessage?.content as Array<{
|
||||
type: string;
|
||||
text?: string;
|
||||
}>;
|
||||
expect(contentArray[0].type).toBe('text');
|
||||
expect(contentArray[0].text).toBe('Command failed');
|
||||
});
|
||||
|
||||
it('should stringify non-string responses', () => {
|
||||
@@ -146,7 +158,318 @@ describe('OpenAIContentConverter', () => {
|
||||
const toolMessage = messages.find((message) => message.role === 'tool');
|
||||
|
||||
expect(toolMessage).toBeDefined();
|
||||
expect(toolMessage?.content).toBe('{"data":{"value":42}}');
|
||||
expect(Array.isArray(toolMessage?.content)).toBe(true);
|
||||
const contentArray = toolMessage?.content as Array<{
|
||||
type: string;
|
||||
text?: string;
|
||||
}>;
|
||||
expect(contentArray[0].type).toBe('text');
|
||||
expect(contentArray[0].text).toBe('{"data":{"value":42}}');
|
||||
});
|
||||
|
||||
it('should convert function responses with inlineData to tool message with embedded image_url', () => {
|
||||
const request: GenerateContentParameters = {
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'model',
|
||||
parts: [
|
||||
{
|
||||
functionCall: {
|
||||
id: 'call_1',
|
||||
name: 'Read',
|
||||
args: {},
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call_1',
|
||||
name: 'Read',
|
||||
response: { output: 'Image content' },
|
||||
parts: [
|
||||
{
|
||||
inlineData: {
|
||||
mimeType: 'image/png',
|
||||
data: 'base64encodedimagedata',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
const messages = converter.convertGeminiRequestToOpenAI(request);
|
||||
|
||||
// Should have tool message with both text and image content
|
||||
const toolMessage = messages.find((message) => message.role === 'tool');
|
||||
expect(toolMessage).toBeDefined();
|
||||
expect((toolMessage as { tool_call_id?: string }).tool_call_id).toBe(
|
||||
'call_1',
|
||||
);
|
||||
expect(Array.isArray(toolMessage?.content)).toBe(true);
|
||||
const contentArray = toolMessage?.content as Array<{
|
||||
type: string;
|
||||
text?: string;
|
||||
image_url?: { url: string };
|
||||
}>;
|
||||
expect(contentArray).toHaveLength(2);
|
||||
expect(contentArray[0].type).toBe('text');
|
||||
expect(contentArray[0].text).toBe('Image content');
|
||||
expect(contentArray[1].type).toBe('image_url');
|
||||
expect(contentArray[1].image_url?.url).toBe(
|
||||
'',
|
||||
);
|
||||
|
||||
// No separate user message should be created
|
||||
const userMessage = messages.find((message) => message.role === 'user');
|
||||
expect(userMessage).toBeUndefined();
|
||||
});
|
||||
|
||||
it('should convert function responses with fileData to tool message with embedded input_file', () => {
|
||||
const request: GenerateContentParameters = {
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'model',
|
||||
parts: [
|
||||
{
|
||||
functionCall: {
|
||||
id: 'call_1',
|
||||
name: 'Read',
|
||||
args: {},
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call_1',
|
||||
name: 'Read',
|
||||
response: { output: 'File content' },
|
||||
parts: [
|
||||
{
|
||||
fileData: {
|
||||
mimeType: 'image/jpeg',
|
||||
fileUri: 'base64imagedata',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
const messages = converter.convertGeminiRequestToOpenAI(request);
|
||||
|
||||
// Should have tool message with both text and file content
|
||||
const toolMessage = messages.find((message) => message.role === 'tool');
|
||||
expect(toolMessage).toBeDefined();
|
||||
expect(Array.isArray(toolMessage?.content)).toBe(true);
|
||||
const contentArray = toolMessage?.content as Array<{
|
||||
type: string;
|
||||
text?: string;
|
||||
file?: { filename: string; file_data: string };
|
||||
}>;
|
||||
expect(contentArray).toHaveLength(2);
|
||||
expect(contentArray[0].type).toBe('text');
|
||||
expect(contentArray[0].text).toBe('File content');
|
||||
expect(contentArray[1].type).toBe('file');
|
||||
expect(contentArray[1].file?.filename).toBe('file'); // Default filename when displayName not provided
|
||||
expect(contentArray[1].file?.file_data).toBe(
|
||||
'',
|
||||
);
|
||||
|
||||
// No separate user message should be created
|
||||
const userMessage = messages.find((message) => message.role === 'user');
|
||||
expect(userMessage).toBeUndefined();
|
||||
});
|
||||
|
||||
it('should convert PDF fileData to tool message with embedded input_file', () => {
|
||||
const request: GenerateContentParameters = {
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'model',
|
||||
parts: [
|
||||
{
|
||||
functionCall: {
|
||||
id: 'call_1',
|
||||
name: 'Read',
|
||||
args: {},
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call_1',
|
||||
name: 'Read',
|
||||
response: { output: 'PDF content' },
|
||||
parts: [
|
||||
{
|
||||
fileData: {
|
||||
mimeType: 'application/pdf',
|
||||
fileUri: 'base64pdfdata',
|
||||
displayName: 'document.pdf',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
const messages = converter.convertGeminiRequestToOpenAI(request);
|
||||
|
||||
// Should have tool message with both text and file content
|
||||
const toolMessage = messages.find((message) => message.role === 'tool');
|
||||
expect(toolMessage).toBeDefined();
|
||||
expect(Array.isArray(toolMessage?.content)).toBe(true);
|
||||
const contentArray = toolMessage?.content as Array<{
|
||||
type: string;
|
||||
text?: string;
|
||||
file?: { filename: string; file_data: string };
|
||||
}>;
|
||||
expect(contentArray).toHaveLength(2);
|
||||
expect(contentArray[0].type).toBe('text');
|
||||
expect(contentArray[0].text).toBe('PDF content');
|
||||
expect(contentArray[1].type).toBe('file');
|
||||
expect(contentArray[1].file?.filename).toBe('document.pdf');
|
||||
expect(contentArray[1].file?.file_data).toBe(
|
||||
'data:application/pdf;base64,base64pdfdata',
|
||||
);
|
||||
|
||||
// No separate user message should be created
|
||||
const userMessage = messages.find((message) => message.role === 'user');
|
||||
expect(userMessage).toBeUndefined();
|
||||
});
|
||||
|
||||
it('should convert audio parts to tool message with embedded input_audio', () => {
|
||||
const request: GenerateContentParameters = {
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'model',
|
||||
parts: [
|
||||
{
|
||||
functionCall: {
|
||||
id: 'call_1',
|
||||
name: 'Record',
|
||||
args: {},
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call_1',
|
||||
name: 'Record',
|
||||
response: { output: 'Audio recorded' },
|
||||
parts: [
|
||||
{
|
||||
inlineData: {
|
||||
mimeType: 'audio/wav',
|
||||
data: 'audiobase64data',
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
const messages = converter.convertGeminiRequestToOpenAI(request);
|
||||
|
||||
// Should have tool message with both text and audio content
|
||||
const toolMessage = messages.find((message) => message.role === 'tool');
|
||||
expect(toolMessage).toBeDefined();
|
||||
expect(Array.isArray(toolMessage?.content)).toBe(true);
|
||||
const contentArray = toolMessage?.content as Array<{
|
||||
type: string;
|
||||
text?: string;
|
||||
input_audio?: { data: string; format: string };
|
||||
}>;
|
||||
expect(contentArray).toHaveLength(2);
|
||||
expect(contentArray[0].type).toBe('text');
|
||||
expect(contentArray[0].text).toBe('Audio recorded');
|
||||
expect(contentArray[1].type).toBe('input_audio');
|
||||
expect(contentArray[1].input_audio?.data).toBe('audiobase64data');
|
||||
expect(contentArray[1].input_audio?.format).toBe('wav');
|
||||
|
||||
// No separate user message should be created
|
||||
const userMessage = messages.find((message) => message.role === 'user');
|
||||
expect(userMessage).toBeUndefined();
|
||||
});
|
||||
|
||||
it('should create tool message with text-only content when no media parts', () => {
|
||||
const request = createRequestWithFunctionResponse({
|
||||
output: 'Plain text output',
|
||||
});
|
||||
|
||||
const messages = converter.convertGeminiRequestToOpenAI(request);
|
||||
const toolMessage = messages.find((message) => message.role === 'tool');
|
||||
|
||||
expect(toolMessage).toBeDefined();
|
||||
expect(Array.isArray(toolMessage?.content)).toBe(true);
|
||||
const contentArray = toolMessage?.content as Array<{
|
||||
type: string;
|
||||
text?: string;
|
||||
}>;
|
||||
expect(contentArray).toHaveLength(1);
|
||||
expect(contentArray[0].type).toBe('text');
|
||||
expect(contentArray[0].text).toBe('Plain text output');
|
||||
|
||||
// No user message should be created when there's no media
|
||||
const userMessage = messages.find((message) => message.role === 'user');
|
||||
expect(userMessage).toBeUndefined();
|
||||
});
|
||||
|
||||
it('should skip empty function responses with no media and no text', () => {
|
||||
const request: GenerateContentParameters = {
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call_1',
|
||||
name: 'Empty',
|
||||
response: { output: '' },
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
const messages = converter.convertGeminiRequestToOpenAI(request);
|
||||
|
||||
// Should have no messages for empty response
|
||||
expect(messages).toHaveLength(0);
|
||||
});
|
||||
});
|
||||
|
||||
@@ -180,6 +503,35 @@ describe('OpenAIContentConverter', () => {
|
||||
);
|
||||
});
|
||||
|
||||
it('should convert reasoning to a thought part for non-streaming responses', () => {
|
||||
const response = converter.convertOpenAIResponseToGemini({
|
||||
object: 'chat.completion',
|
||||
id: 'chatcmpl-2',
|
||||
created: 123,
|
||||
model: 'gpt-test',
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
message: {
|
||||
role: 'assistant',
|
||||
content: 'final answer',
|
||||
reasoning: 'chain-of-thought',
|
||||
},
|
||||
finish_reason: 'stop',
|
||||
logprobs: null,
|
||||
},
|
||||
],
|
||||
} as unknown as OpenAI.Chat.ChatCompletion);
|
||||
|
||||
const parts = response.candidates?.[0]?.content?.parts;
|
||||
expect(parts?.[0]).toEqual(
|
||||
expect.objectContaining({ thought: true, text: 'chain-of-thought' }),
|
||||
);
|
||||
expect(parts?.[1]).toEqual(
|
||||
expect.objectContaining({ text: 'final answer' }),
|
||||
);
|
||||
});
|
||||
|
||||
it('should convert streaming reasoning_content delta to a thought part', () => {
|
||||
const chunk = converter.convertOpenAIChunkToGemini({
|
||||
object: 'chat.completion.chunk',
|
||||
@@ -208,6 +560,34 @@ describe('OpenAIContentConverter', () => {
|
||||
);
|
||||
});
|
||||
|
||||
it('should convert streaming reasoning delta to a thought part', () => {
|
||||
const chunk = converter.convertOpenAIChunkToGemini({
|
||||
object: 'chat.completion.chunk',
|
||||
id: 'chunk-1b',
|
||||
created: 456,
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
delta: {
|
||||
content: 'visible text',
|
||||
reasoning: 'thinking...',
|
||||
},
|
||||
finish_reason: 'stop',
|
||||
logprobs: null,
|
||||
},
|
||||
],
|
||||
model: 'gpt-test',
|
||||
} as unknown as OpenAI.Chat.ChatCompletionChunk);
|
||||
|
||||
const parts = chunk.candidates?.[0]?.content?.parts;
|
||||
expect(parts?.[0]).toEqual(
|
||||
expect.objectContaining({ thought: true, text: 'thinking...' }),
|
||||
);
|
||||
expect(parts?.[1]).toEqual(
|
||||
expect.objectContaining({ text: 'visible text' }),
|
||||
);
|
||||
});
|
||||
|
||||
it('should not throw when streaming chunk has no delta', () => {
|
||||
const chunk = converter.convertOpenAIChunkToGemini({
|
||||
object: 'chat.completion.chunk',
|
||||
@@ -584,11 +964,7 @@ describe('OpenAIContentConverter', () => {
|
||||
|
||||
expect(messages).toHaveLength(1);
|
||||
expect(messages[0].role).toBe('assistant');
|
||||
const content = messages[0]
|
||||
.content as OpenAI.Chat.ChatCompletionContentPart[];
|
||||
expect(content).toHaveLength(2);
|
||||
expect(content[0]).toEqual({ type: 'text', text: 'First part' });
|
||||
expect(content[1]).toEqual({ type: 'text', text: 'Second part' });
|
||||
expect(messages[0].content).toBe('First partSecond part');
|
||||
});
|
||||
|
||||
it('should merge multiple consecutive assistant messages', () => {
|
||||
@@ -614,9 +990,7 @@ describe('OpenAIContentConverter', () => {
|
||||
|
||||
expect(messages).toHaveLength(1);
|
||||
expect(messages[0].role).toBe('assistant');
|
||||
const content = messages[0]
|
||||
.content as OpenAI.Chat.ChatCompletionContentPart[];
|
||||
expect(content).toHaveLength(3);
|
||||
expect(messages[0].content).toBe('Part 1Part 2Part 3');
|
||||
});
|
||||
|
||||
it('should merge tool_calls from consecutive assistant messages', () => {
|
||||
@@ -674,7 +1048,9 @@ describe('OpenAIContentConverter', () => {
|
||||
],
|
||||
};
|
||||
|
||||
const messages = converter.convertGeminiRequestToOpenAI(request);
|
||||
const messages = converter.convertGeminiRequestToOpenAI(request, {
|
||||
cleanOrphanToolCalls: false,
|
||||
});
|
||||
|
||||
// Should have: assistant (tool_call_1), tool (result_1), assistant (tool_call_2), tool (result_2)
|
||||
expect(messages).toHaveLength(4);
|
||||
@@ -729,10 +1105,7 @@ describe('OpenAIContentConverter', () => {
|
||||
const messages = converter.convertGeminiRequestToOpenAI(request);
|
||||
|
||||
expect(messages).toHaveLength(1);
|
||||
const content = messages[0]
|
||||
.content as OpenAI.Chat.ChatCompletionContentPart[];
|
||||
expect(Array.isArray(content)).toBe(true);
|
||||
expect(content).toHaveLength(2);
|
||||
expect(messages[0].content).toBe('Text partAnother text');
|
||||
});
|
||||
|
||||
it('should merge empty content correctly', () => {
|
||||
@@ -758,11 +1131,7 @@ describe('OpenAIContentConverter', () => {
|
||||
|
||||
// Empty messages should be filtered out
|
||||
expect(messages).toHaveLength(1);
|
||||
const content = messages[0]
|
||||
.content as OpenAI.Chat.ChatCompletionContentPart[];
|
||||
expect(content).toHaveLength(2);
|
||||
expect(content[0]).toEqual({ type: 'text', text: 'First' });
|
||||
expect(content[1]).toEqual({ type: 'text', text: 'Second' });
|
||||
expect(messages[0].content).toBe('FirstSecond');
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -11,7 +11,6 @@ import type {
|
||||
Tool,
|
||||
ToolListUnion,
|
||||
CallableTool,
|
||||
FunctionCall,
|
||||
FunctionResponse,
|
||||
ContentListUnion,
|
||||
ContentUnion,
|
||||
@@ -47,11 +46,13 @@ type ExtendedChatCompletionMessageParam =
|
||||
export interface ExtendedCompletionMessage
|
||||
extends OpenAI.Chat.ChatCompletionMessage {
|
||||
reasoning_content?: string | null;
|
||||
reasoning?: string | null;
|
||||
}
|
||||
|
||||
export interface ExtendedCompletionChunkDelta
|
||||
extends OpenAI.Chat.ChatCompletionChunk.Choice.Delta {
|
||||
reasoning_content?: string | null;
|
||||
reasoning?: string | null;
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -63,21 +64,17 @@ export interface ToolCallAccumulator {
|
||||
arguments: string;
|
||||
}
|
||||
|
||||
/**
|
||||
* Parsed parts from Gemini content, categorized by type
|
||||
*/
|
||||
interface ParsedParts {
|
||||
thoughtParts: string[];
|
||||
contentParts: string[];
|
||||
functionCalls: FunctionCall[];
|
||||
functionResponses: FunctionResponse[];
|
||||
mediaParts: Array<{
|
||||
type: 'image' | 'audio' | 'file';
|
||||
data: string;
|
||||
mimeType: string;
|
||||
fileUri?: string;
|
||||
}>;
|
||||
}
|
||||
type OpenAIContentPart =
|
||||
| OpenAI.Chat.ChatCompletionContentPartText
|
||||
| OpenAI.Chat.ChatCompletionContentPartImage
|
||||
| OpenAI.Chat.ChatCompletionContentPartInputAudio
|
||||
| {
|
||||
type: 'file';
|
||||
file: {
|
||||
filename: string;
|
||||
file_data: string;
|
||||
};
|
||||
};
|
||||
|
||||
/**
|
||||
* Converter class for transforming data between Gemini and OpenAI formats
|
||||
@@ -271,28 +268,48 @@ export class OpenAIContentConverter {
|
||||
): OpenAI.Chat.ChatCompletion {
|
||||
const candidate = response.candidates?.[0];
|
||||
const parts = (candidate?.content?.parts || []) as Part[];
|
||||
const parsedParts = this.parseParts(parts);
|
||||
|
||||
// Parse parts inline
|
||||
const thoughtParts: string[] = [];
|
||||
const contentParts: string[] = [];
|
||||
const toolCalls: OpenAI.Chat.ChatCompletionMessageToolCall[] = [];
|
||||
let toolCallIndex = 0;
|
||||
|
||||
for (const part of parts) {
|
||||
if (typeof part === 'string') {
|
||||
contentParts.push(part);
|
||||
} else if ('text' in part && part.text) {
|
||||
if ('thought' in part && part.thought) {
|
||||
thoughtParts.push(part.text);
|
||||
} else {
|
||||
contentParts.push(part.text);
|
||||
}
|
||||
} else if ('functionCall' in part && part.functionCall) {
|
||||
toolCalls.push({
|
||||
id: part.functionCall.id || `call_${toolCallIndex}`,
|
||||
type: 'function' as const,
|
||||
function: {
|
||||
name: part.functionCall.name || '',
|
||||
arguments: JSON.stringify(part.functionCall.args || {}),
|
||||
},
|
||||
});
|
||||
toolCallIndex += 1;
|
||||
}
|
||||
}
|
||||
|
||||
const message: ExtendedCompletionMessage = {
|
||||
role: 'assistant',
|
||||
content: parsedParts.contentParts.join('') || null,
|
||||
content: contentParts.join('') || null,
|
||||
refusal: null,
|
||||
};
|
||||
|
||||
const reasoningContent = parsedParts.thoughtParts.join('');
|
||||
const reasoningContent = thoughtParts.join('');
|
||||
if (reasoningContent) {
|
||||
message.reasoning_content = reasoningContent;
|
||||
}
|
||||
|
||||
if (parsedParts.functionCalls.length > 0) {
|
||||
message.tool_calls = parsedParts.functionCalls.map((call, index) => ({
|
||||
id: call.id || `call_${index}`,
|
||||
type: 'function' as const,
|
||||
function: {
|
||||
name: call.name || '',
|
||||
arguments: JSON.stringify(call.args || {}),
|
||||
},
|
||||
}));
|
||||
if (toolCalls.length > 0) {
|
||||
message.tool_calls = toolCalls;
|
||||
}
|
||||
|
||||
const finishReason = this.mapGeminiFinishReasonToOpenAI(
|
||||
@@ -390,40 +407,82 @@ export class OpenAIContentConverter {
|
||||
}
|
||||
|
||||
if (!this.isContentObject(content)) return;
|
||||
const parts = content.parts || [];
|
||||
const role = content.role === 'model' ? 'assistant' : 'user';
|
||||
|
||||
const parsedParts = this.parseParts(content.parts || []);
|
||||
const contentParts: OpenAIContentPart[] = [];
|
||||
const reasoningParts: string[] = [];
|
||||
const toolCalls: OpenAI.Chat.ChatCompletionMessageToolCall[] = [];
|
||||
let toolCallIndex = 0;
|
||||
|
||||
// Handle function responses (tool results) first
|
||||
if (parsedParts.functionResponses.length > 0) {
|
||||
for (const funcResponse of parsedParts.functionResponses) {
|
||||
messages.push({
|
||||
role: 'tool' as const,
|
||||
tool_call_id: funcResponse.id || '',
|
||||
content: this.extractFunctionResponseContent(funcResponse.response),
|
||||
});
|
||||
for (const part of parts) {
|
||||
if (typeof part === 'string') {
|
||||
contentParts.push({ type: 'text' as const, text: part });
|
||||
continue;
|
||||
}
|
||||
|
||||
if ('text' in part && 'thought' in part && part.thought) {
|
||||
if (role === 'assistant' && part.text) {
|
||||
reasoningParts.push(part.text);
|
||||
}
|
||||
}
|
||||
|
||||
if ('text' in part && part.text && !('thought' in part && part.thought)) {
|
||||
contentParts.push({ type: 'text' as const, text: part.text });
|
||||
}
|
||||
|
||||
const mediaPart = this.createMediaContentPart(part);
|
||||
if (mediaPart && role === 'user') {
|
||||
contentParts.push(mediaPart);
|
||||
}
|
||||
|
||||
if ('functionCall' in part && part.functionCall && role === 'assistant') {
|
||||
toolCalls.push({
|
||||
id: part.functionCall.id || `call_${toolCallIndex}`,
|
||||
type: 'function' as const,
|
||||
function: {
|
||||
name: part.functionCall.name || '',
|
||||
arguments: JSON.stringify(part.functionCall.args || {}),
|
||||
},
|
||||
});
|
||||
toolCallIndex += 1;
|
||||
}
|
||||
|
||||
if (part.functionResponse && role === 'user') {
|
||||
// Create tool message for the function response (with embedded media)
|
||||
const toolMessage = this.createToolMessage(part.functionResponse);
|
||||
if (toolMessage) {
|
||||
messages.push(toolMessage);
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Handle model messages with function calls
|
||||
if (content.role === 'model' && parsedParts.functionCalls.length > 0) {
|
||||
const toolCalls = parsedParts.functionCalls.map((fc, index) => ({
|
||||
id: fc.id || `call_${index}`,
|
||||
type: 'function' as const,
|
||||
function: {
|
||||
name: fc.name || '',
|
||||
arguments: JSON.stringify(fc.args || {}),
|
||||
},
|
||||
}));
|
||||
if (role === 'assistant') {
|
||||
if (
|
||||
contentParts.length === 0 &&
|
||||
toolCalls.length === 0 &&
|
||||
reasoningParts.length === 0
|
||||
) {
|
||||
return;
|
||||
}
|
||||
|
||||
const assistantTextContent = contentParts
|
||||
.filter(
|
||||
(part): part is OpenAI.Chat.ChatCompletionContentPartText =>
|
||||
part.type === 'text',
|
||||
)
|
||||
.map((part) => part.text)
|
||||
.join('');
|
||||
const assistantMessage: ExtendedChatCompletionAssistantMessageParam = {
|
||||
role: 'assistant' as const,
|
||||
content: parsedParts.contentParts.join('') || null,
|
||||
tool_calls: toolCalls,
|
||||
role: 'assistant',
|
||||
content: assistantTextContent || null,
|
||||
};
|
||||
|
||||
// Only include reasoning_content if it has actual content
|
||||
const reasoningContent = parsedParts.thoughtParts.join('');
|
||||
if (toolCalls.length > 0) {
|
||||
assistantMessage.tool_calls = toolCalls;
|
||||
}
|
||||
|
||||
const reasoningContent = reasoningParts.join('');
|
||||
if (reasoningContent) {
|
||||
assistantMessage.reasoning_content = reasoningContent;
|
||||
}
|
||||
@@ -432,79 +491,15 @@ export class OpenAIContentConverter {
|
||||
return;
|
||||
}
|
||||
|
||||
// Handle regular messages with multimodal content
|
||||
const role = content.role === 'model' ? 'assistant' : 'user';
|
||||
const openAIMessage = this.createMultimodalMessage(role, parsedParts);
|
||||
|
||||
if (openAIMessage) {
|
||||
messages.push(openAIMessage);
|
||||
if (contentParts.length > 0) {
|
||||
messages.push({
|
||||
role: 'user',
|
||||
content:
|
||||
contentParts as unknown as OpenAI.Chat.ChatCompletionContentPart[],
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Parse Gemini parts into categorized components
|
||||
*/
|
||||
private parseParts(parts: Part[]): ParsedParts {
|
||||
const thoughtParts: string[] = [];
|
||||
const contentParts: string[] = [];
|
||||
const functionCalls: FunctionCall[] = [];
|
||||
const functionResponses: FunctionResponse[] = [];
|
||||
const mediaParts: Array<{
|
||||
type: 'image' | 'audio' | 'file';
|
||||
data: string;
|
||||
mimeType: string;
|
||||
fileUri?: string;
|
||||
}> = [];
|
||||
|
||||
for (const part of parts) {
|
||||
if (typeof part === 'string') {
|
||||
contentParts.push(part);
|
||||
} else if (
|
||||
'text' in part &&
|
||||
part.text &&
|
||||
!('thought' in part && part.thought)
|
||||
) {
|
||||
contentParts.push(part.text);
|
||||
} else if (
|
||||
'text' in part &&
|
||||
part.text &&
|
||||
'thought' in part &&
|
||||
part.thought
|
||||
) {
|
||||
thoughtParts.push(part.text);
|
||||
} else if ('functionCall' in part && part.functionCall) {
|
||||
functionCalls.push(part.functionCall);
|
||||
} else if ('functionResponse' in part && part.functionResponse) {
|
||||
functionResponses.push(part.functionResponse);
|
||||
} else if ('inlineData' in part && part.inlineData) {
|
||||
const { data, mimeType } = part.inlineData;
|
||||
if (data && mimeType) {
|
||||
const mediaType = this.getMediaType(mimeType);
|
||||
mediaParts.push({ type: mediaType, data, mimeType });
|
||||
}
|
||||
} else if ('fileData' in part && part.fileData) {
|
||||
const { fileUri, mimeType } = part.fileData;
|
||||
if (fileUri && mimeType) {
|
||||
const mediaType = this.getMediaType(mimeType);
|
||||
mediaParts.push({
|
||||
type: mediaType,
|
||||
data: '',
|
||||
mimeType,
|
||||
fileUri,
|
||||
});
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
thoughtParts,
|
||||
contentParts,
|
||||
functionCalls,
|
||||
functionResponses,
|
||||
mediaParts,
|
||||
};
|
||||
}
|
||||
|
||||
private extractFunctionResponseContent(response: unknown): string {
|
||||
if (response === null || response === undefined) {
|
||||
return '';
|
||||
@@ -535,6 +530,96 @@ export class OpenAIContentConverter {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a tool message from function response (with embedded media parts)
|
||||
*/
|
||||
private createToolMessage(
|
||||
response: FunctionResponse,
|
||||
): OpenAI.Chat.ChatCompletionToolMessageParam | null {
|
||||
const textContent = this.extractFunctionResponseContent(response.response);
|
||||
const contentParts: OpenAIContentPart[] = [];
|
||||
|
||||
// Add text content first if present
|
||||
if (textContent) {
|
||||
contentParts.push({ type: 'text' as const, text: textContent });
|
||||
}
|
||||
|
||||
// Add media parts from function response
|
||||
for (const part of response.parts || []) {
|
||||
const mediaPart = this.createMediaContentPart(part);
|
||||
if (mediaPart) {
|
||||
contentParts.push(mediaPart);
|
||||
}
|
||||
}
|
||||
|
||||
// Tool messages require content, so skip if empty
|
||||
if (contentParts.length === 0) {
|
||||
return null;
|
||||
}
|
||||
|
||||
// Cast to OpenAI type - some OpenAI-compatible APIs support richer content in tool messages
|
||||
return {
|
||||
role: 'tool' as const,
|
||||
tool_call_id: response.id || '',
|
||||
content: contentParts as unknown as
|
||||
| string
|
||||
| OpenAI.Chat.ChatCompletionContentPartText[],
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Create OpenAI media content part from Gemini part
|
||||
*/
|
||||
private createMediaContentPart(part: Part): OpenAIContentPart | null {
|
||||
if (part.inlineData?.mimeType && part.inlineData?.data) {
|
||||
const mediaType = this.getMediaType(part.inlineData.mimeType);
|
||||
if (mediaType === 'image') {
|
||||
const dataUrl = `data:${part.inlineData.mimeType};base64,${part.inlineData.data}`;
|
||||
return {
|
||||
type: 'image_url' as const,
|
||||
image_url: { url: dataUrl },
|
||||
};
|
||||
}
|
||||
if (mediaType === 'audio') {
|
||||
const format = this.getAudioFormat(part.inlineData.mimeType);
|
||||
if (format) {
|
||||
return {
|
||||
type: 'input_audio' as const,
|
||||
input_audio: {
|
||||
data: part.inlineData.data,
|
||||
format,
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (part.fileData?.mimeType && part.fileData?.fileUri) {
|
||||
const filename = part.fileData.displayName || 'file';
|
||||
const fileUri = part.fileData.fileUri;
|
||||
|
||||
if (fileUri.startsWith('data:')) {
|
||||
return {
|
||||
type: 'file' as const,
|
||||
file: {
|
||||
filename,
|
||||
file_data: fileUri,
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
return {
|
||||
type: 'file' as const,
|
||||
file: {
|
||||
filename,
|
||||
file_data: `data:${part.fileData.mimeType};base64,${fileUri}`,
|
||||
},
|
||||
};
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Determine media type from MIME type
|
||||
*/
|
||||
@@ -544,85 +629,6 @@ export class OpenAIContentConverter {
|
||||
return 'file';
|
||||
}
|
||||
|
||||
/**
|
||||
* Create multimodal OpenAI message from parsed parts
|
||||
*/
|
||||
private createMultimodalMessage(
|
||||
role: 'user' | 'assistant',
|
||||
parsedParts: Pick<
|
||||
ParsedParts,
|
||||
'contentParts' | 'mediaParts' | 'thoughtParts'
|
||||
>,
|
||||
): ExtendedChatCompletionMessageParam | null {
|
||||
const { contentParts, mediaParts, thoughtParts } = parsedParts;
|
||||
const reasoningContent = thoughtParts.join('');
|
||||
const content = contentParts.map((text) => ({
|
||||
type: 'text' as const,
|
||||
text,
|
||||
}));
|
||||
|
||||
// If no media parts, return simple text message
|
||||
if (mediaParts.length === 0) {
|
||||
if (content.length === 0) return null;
|
||||
const message: ExtendedChatCompletionMessageParam = { role, content };
|
||||
// Only include reasoning_content if it has actual content
|
||||
if (reasoningContent) {
|
||||
(
|
||||
message as ExtendedChatCompletionAssistantMessageParam
|
||||
).reasoning_content = reasoningContent;
|
||||
}
|
||||
return message;
|
||||
}
|
||||
|
||||
// For assistant messages with media, convert to text only
|
||||
// since OpenAI assistant messages don't support media content arrays
|
||||
if (role === 'assistant') {
|
||||
return content.length > 0
|
||||
? { role: 'assistant' as const, content }
|
||||
: null;
|
||||
}
|
||||
|
||||
const contentArray: OpenAI.Chat.ChatCompletionContentPart[] = [...content];
|
||||
|
||||
// Add media content
|
||||
for (const mediaPart of mediaParts) {
|
||||
if (mediaPart.type === 'image') {
|
||||
if (mediaPart.fileUri) {
|
||||
// For file URIs, use the URI directly
|
||||
contentArray.push({
|
||||
type: 'image_url' as const,
|
||||
image_url: { url: mediaPart.fileUri },
|
||||
});
|
||||
} else if (mediaPart.data) {
|
||||
// For inline data, create data URL
|
||||
const dataUrl = `data:${mediaPart.mimeType};base64,${mediaPart.data}`;
|
||||
contentArray.push({
|
||||
type: 'image_url' as const,
|
||||
image_url: { url: dataUrl },
|
||||
});
|
||||
}
|
||||
} else if (mediaPart.type === 'audio' && mediaPart.data) {
|
||||
// Convert audio format from MIME type
|
||||
const format = this.getAudioFormat(mediaPart.mimeType);
|
||||
if (format) {
|
||||
contentArray.push({
|
||||
type: 'input_audio' as const,
|
||||
input_audio: {
|
||||
data: mediaPart.data,
|
||||
format: format as 'wav' | 'mp3',
|
||||
},
|
||||
});
|
||||
}
|
||||
}
|
||||
// Note: File type is not directly supported in OpenAI's current API
|
||||
// Could be extended in the future or handled as text description
|
||||
}
|
||||
|
||||
return contentArray.length > 0
|
||||
? { role: 'user' as const, content: contentArray }
|
||||
: null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert MIME type to OpenAI audio format
|
||||
*/
|
||||
@@ -693,8 +699,9 @@ export class OpenAIContentConverter {
|
||||
const parts: Part[] = [];
|
||||
|
||||
// Handle reasoning content (thoughts)
|
||||
const reasoningText = (choice.message as ExtendedCompletionMessage)
|
||||
.reasoning_content;
|
||||
const reasoningText =
|
||||
(choice.message as ExtendedCompletionMessage).reasoning_content ??
|
||||
(choice.message as ExtendedCompletionMessage).reasoning;
|
||||
if (reasoningText) {
|
||||
parts.push({ text: reasoningText, thought: true });
|
||||
}
|
||||
@@ -798,8 +805,9 @@ export class OpenAIContentConverter {
|
||||
if (choice) {
|
||||
const parts: Part[] = [];
|
||||
|
||||
const reasoningText = (choice.delta as ExtendedCompletionChunkDelta)
|
||||
?.reasoning_content;
|
||||
const reasoningText =
|
||||
(choice.delta as ExtendedCompletionChunkDelta)?.reasoning_content ??
|
||||
(choice.delta as ExtendedCompletionChunkDelta)?.reasoning;
|
||||
if (reasoningText) {
|
||||
parts.push({ text: reasoningText, thought: true });
|
||||
}
|
||||
@@ -1130,6 +1138,10 @@ export class OpenAIContentConverter {
|
||||
|
||||
// If the last message is also an assistant message, merge them
|
||||
if (lastMessage.role === 'assistant') {
|
||||
const lastToolCalls =
|
||||
'tool_calls' in lastMessage ? lastMessage.tool_calls || [] : [];
|
||||
const currentToolCalls =
|
||||
'tool_calls' in message ? message.tool_calls || [] : [];
|
||||
// Combine content
|
||||
const lastContent = lastMessage.content;
|
||||
const currentContent = message.content;
|
||||
@@ -1171,10 +1183,6 @@ export class OpenAIContentConverter {
|
||||
}
|
||||
|
||||
// Combine tool calls
|
||||
const lastToolCalls =
|
||||
'tool_calls' in lastMessage ? lastMessage.tool_calls || [] : [];
|
||||
const currentToolCalls =
|
||||
'tool_calls' in message ? message.tool_calls || [] : [];
|
||||
const combinedToolCalls = [...lastToolCalls, ...currentToolCalls];
|
||||
|
||||
// Update the last message with combined data
|
||||
|
||||
@@ -320,13 +320,15 @@ export class ContentGenerationPipeline {
|
||||
'frequency_penalty',
|
||||
'frequencyPenalty',
|
||||
),
|
||||
...this.buildReasoningConfig(),
|
||||
...this.buildReasoningConfig(request),
|
||||
};
|
||||
|
||||
return params;
|
||||
}
|
||||
|
||||
private buildReasoningConfig(): Record<string, unknown> {
|
||||
private buildReasoningConfig(
|
||||
request: GenerateContentParameters,
|
||||
): Record<string, unknown> {
|
||||
// Reasoning configuration for OpenAI-compatible endpoints is highly fragmented.
|
||||
// For example, across common providers and models:
|
||||
//
|
||||
@@ -336,13 +338,21 @@ export class ContentGenerationPipeline {
|
||||
// - gpt-5.x series — thinking is enabled by default; can be disabled via `reasoning.effort`
|
||||
// - qwen3 series — model-dependent; can be manually disabled via `extra_body.enable_thinking`
|
||||
//
|
||||
// Given this inconsistency, we choose not to set any reasoning config here and
|
||||
// instead rely on each model’s default behavior.
|
||||
// Given this inconsistency, we avoid mapping values and only pass through the
|
||||
// configured reasoning object when explicitly enabled. This keeps provider- and
|
||||
// model-specific semantics intact while honoring request-level opt-out.
|
||||
|
||||
// We plan to introduce provider- and model-specific settings to enable more
|
||||
// fine-grained control over reasoning configuration.
|
||||
if (request.config?.thinkingConfig?.includeThoughts === false) {
|
||||
return {};
|
||||
}
|
||||
|
||||
return {};
|
||||
const reasoning = this.contentGeneratorConfig.reasoning;
|
||||
|
||||
if (reasoning === false || reasoning === undefined) {
|
||||
return {};
|
||||
}
|
||||
|
||||
return { reasoning };
|
||||
}
|
||||
|
||||
/**
|
||||
|
||||
@@ -608,7 +608,7 @@ describe('DashScopeOpenAICompatibleProvider', () => {
|
||||
});
|
||||
});
|
||||
|
||||
it('should add empty text item with cache control if last item is not text for streaming requests', () => {
|
||||
it('should add cache control to last item even if not text for streaming requests', () => {
|
||||
const requestWithNonTextLast: OpenAI.Chat.ChatCompletionCreateParams = {
|
||||
model: 'qwen-max',
|
||||
stream: true, // This will trigger cache control on last message
|
||||
@@ -633,12 +633,12 @@ describe('DashScopeOpenAICompatibleProvider', () => {
|
||||
|
||||
const content = result.messages[0]
|
||||
.content as OpenAI.Chat.ChatCompletionContentPart[];
|
||||
expect(content).toHaveLength(3);
|
||||
expect(content).toHaveLength(2);
|
||||
|
||||
// Should add empty text item with cache control
|
||||
expect(content[2]).toEqual({
|
||||
type: 'text',
|
||||
text: '',
|
||||
// Cache control should be added to the last item (image)
|
||||
expect(content[1]).toEqual({
|
||||
type: 'image_url',
|
||||
image_url: { url: 'https://example.com/image.jpg' },
|
||||
cache_control: { type: 'ephemeral' },
|
||||
});
|
||||
});
|
||||
@@ -709,13 +709,8 @@ describe('DashScopeOpenAICompatibleProvider', () => {
|
||||
|
||||
const content = result.messages[0]
|
||||
.content as OpenAI.Chat.ChatCompletionContentPart[];
|
||||
expect(content).toEqual([
|
||||
{
|
||||
type: 'text',
|
||||
text: '',
|
||||
cache_control: { type: 'ephemeral' },
|
||||
},
|
||||
]);
|
||||
// Empty content array should remain empty
|
||||
expect(content).toEqual([]);
|
||||
});
|
||||
});
|
||||
|
||||
|
||||
@@ -257,31 +257,15 @@ export class DashScopeOpenAICompatibleProvider
|
||||
contentArray: ChatCompletionContentPartWithCache[],
|
||||
): ChatCompletionContentPartWithCache[] {
|
||||
if (contentArray.length === 0) {
|
||||
return [
|
||||
{
|
||||
type: 'text',
|
||||
text: '',
|
||||
cache_control: { type: 'ephemeral' },
|
||||
} as ChatCompletionContentPartTextWithCache,
|
||||
];
|
||||
return contentArray;
|
||||
}
|
||||
|
||||
// Add cache_control to the last text item
|
||||
const lastItem = contentArray[contentArray.length - 1];
|
||||
|
||||
if (lastItem.type === 'text') {
|
||||
// Add cache_control to the last text item
|
||||
contentArray[contentArray.length - 1] = {
|
||||
...lastItem,
|
||||
cache_control: { type: 'ephemeral' },
|
||||
} as ChatCompletionContentPartTextWithCache;
|
||||
} else {
|
||||
// If the last item is not text, add a new text item with cache_control
|
||||
contentArray.push({
|
||||
type: 'text',
|
||||
text: '',
|
||||
cache_control: { type: 'ephemeral' },
|
||||
} as ChatCompletionContentPartTextWithCache);
|
||||
}
|
||||
contentArray[contentArray.length - 1] = {
|
||||
...lastItem,
|
||||
cache_control: { type: 'ephemeral' },
|
||||
} as ChatCompletionContentPartTextWithCache;
|
||||
|
||||
return contentArray;
|
||||
}
|
||||
|
||||
@@ -283,6 +283,7 @@ describe('ReadFileTool', () => {
|
||||
inlineData: {
|
||||
data: pngHeader.toString('base64'),
|
||||
mimeType: 'image/png',
|
||||
displayName: 'image.png',
|
||||
},
|
||||
});
|
||||
expect(result.returnDisplay).toBe('Read image file: image.png');
|
||||
@@ -301,9 +302,10 @@ describe('ReadFileTool', () => {
|
||||
|
||||
const result = await invocation.execute(abortSignal);
|
||||
expect(result.llmContent).toEqual({
|
||||
inlineData: {
|
||||
data: pdfHeader.toString('base64'),
|
||||
fileData: {
|
||||
fileUri: pdfHeader.toString('base64'),
|
||||
mimeType: 'application/pdf',
|
||||
displayName: 'document.pdf',
|
||||
},
|
||||
});
|
||||
expect(result.returnDisplay).toBe('Read pdf file: document.pdf');
|
||||
|
||||
@@ -383,6 +383,7 @@ describe('ReadManyFilesTool', () => {
|
||||
0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a,
|
||||
]).toString('base64'),
|
||||
mimeType: 'image/png',
|
||||
displayName: 'image.png',
|
||||
},
|
||||
},
|
||||
'\n--- End of content ---',
|
||||
@@ -407,6 +408,7 @@ describe('ReadManyFilesTool', () => {
|
||||
0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a,
|
||||
]).toString('base64'),
|
||||
mimeType: 'image/png',
|
||||
displayName: 'myExactImage.png',
|
||||
},
|
||||
},
|
||||
'\n--- End of content ---',
|
||||
@@ -434,32 +436,34 @@ describe('ReadManyFilesTool', () => {
|
||||
);
|
||||
});
|
||||
|
||||
it('should include PDF files as inlineData parts if explicitly requested by extension', async () => {
|
||||
it('should include PDF files as fileData parts if explicitly requested by extension', async () => {
|
||||
createBinaryFile('important.pdf', Buffer.from('%PDF-1.4...'));
|
||||
const params = { paths: ['*.pdf'] }; // Explicitly requesting .pdf files
|
||||
const invocation = tool.build(params);
|
||||
const result = await invocation.execute(new AbortController().signal);
|
||||
expect(result.llmContent).toEqual([
|
||||
{
|
||||
inlineData: {
|
||||
data: Buffer.from('%PDF-1.4...').toString('base64'),
|
||||
fileData: {
|
||||
fileUri: Buffer.from('%PDF-1.4...').toString('base64'),
|
||||
mimeType: 'application/pdf',
|
||||
displayName: 'important.pdf',
|
||||
},
|
||||
},
|
||||
'\n--- End of content ---',
|
||||
]);
|
||||
});
|
||||
|
||||
it('should include PDF files as inlineData parts if explicitly requested by name', async () => {
|
||||
it('should include PDF files as fileData parts if explicitly requested by name', async () => {
|
||||
createBinaryFile('report-final.pdf', Buffer.from('%PDF-1.4...'));
|
||||
const params = { paths: ['report-final.pdf'] };
|
||||
const invocation = tool.build(params);
|
||||
const result = await invocation.execute(new AbortController().signal);
|
||||
expect(result.llmContent).toEqual([
|
||||
{
|
||||
inlineData: {
|
||||
data: Buffer.from('%PDF-1.4...').toString('base64'),
|
||||
fileData: {
|
||||
fileUri: Buffer.from('%PDF-1.4...').toString('base64'),
|
||||
mimeType: 'application/pdf',
|
||||
displayName: 'report-final.pdf',
|
||||
},
|
||||
},
|
||||
'\n--- End of content ---',
|
||||
|
||||
@@ -731,6 +731,10 @@ describe('fileUtils', () => {
|
||||
expect(
|
||||
(result.llmContent as { inlineData: { data: string } }).inlineData.data,
|
||||
).toBe(fakePngData.toString('base64'));
|
||||
expect(
|
||||
(result.llmContent as { inlineData: { displayName?: string } })
|
||||
.inlineData.displayName,
|
||||
).toBe('image.png');
|
||||
expect(result.returnDisplay).toContain('Read image file: image.png');
|
||||
});
|
||||
|
||||
@@ -743,15 +747,20 @@ describe('fileUtils', () => {
|
||||
mockConfig,
|
||||
);
|
||||
expect(
|
||||
(result.llmContent as { inlineData: unknown }).inlineData,
|
||||
(result.llmContent as { fileData: unknown }).fileData,
|
||||
).toBeDefined();
|
||||
expect(
|
||||
(result.llmContent as { inlineData: { mimeType: string } }).inlineData
|
||||
(result.llmContent as { fileData: { mimeType: string } }).fileData
|
||||
.mimeType,
|
||||
).toBe('application/pdf');
|
||||
expect(
|
||||
(result.llmContent as { inlineData: { data: string } }).inlineData.data,
|
||||
(result.llmContent as { fileData: { fileUri: string } }).fileData
|
||||
.fileUri,
|
||||
).toBe(fakePdfData.toString('base64'));
|
||||
expect(
|
||||
(result.llmContent as { fileData: { displayName?: string } }).fileData
|
||||
.displayName,
|
||||
).toBe('document.pdf');
|
||||
expect(result.returnDisplay).toContain('Read pdf file: document.pdf');
|
||||
});
|
||||
|
||||
|
||||
@@ -351,6 +351,7 @@ export async function processSingleFileContent(
|
||||
.relative(rootDirectory, filePath)
|
||||
.replace(/\\/g, '/');
|
||||
|
||||
const displayName = path.basename(filePath);
|
||||
switch (fileType) {
|
||||
case 'binary': {
|
||||
return {
|
||||
@@ -456,7 +457,6 @@ export async function processSingleFileContent(
|
||||
};
|
||||
}
|
||||
case 'image':
|
||||
case 'pdf':
|
||||
case 'audio':
|
||||
case 'video': {
|
||||
const contentBuffer = await fs.promises.readFile(filePath);
|
||||
@@ -466,6 +466,21 @@ export async function processSingleFileContent(
|
||||
inlineData: {
|
||||
data: base64Data,
|
||||
mimeType: mime.getType(filePath) || 'application/octet-stream',
|
||||
displayName,
|
||||
},
|
||||
},
|
||||
returnDisplay: `Read ${fileType} file: ${relativePathForDisplay}`,
|
||||
};
|
||||
}
|
||||
case 'pdf': {
|
||||
const contentBuffer = await fs.promises.readFile(filePath);
|
||||
const base64Data = contentBuffer.toString('base64');
|
||||
return {
|
||||
llmContent: {
|
||||
fileData: {
|
||||
fileUri: base64Data,
|
||||
mimeType: mime.getType(filePath) || 'application/octet-stream',
|
||||
displayName,
|
||||
},
|
||||
},
|
||||
returnDisplay: `Read ${fileType} file: ${relativePathForDisplay}`,
|
||||
|
||||
@@ -113,6 +113,7 @@ describe('readPathFromWorkspace', () => {
|
||||
inlineData: {
|
||||
mimeType: 'image/png',
|
||||
data: imageData.toString('base64'),
|
||||
displayName: 'image.png',
|
||||
},
|
||||
},
|
||||
]);
|
||||
@@ -263,6 +264,7 @@ describe('readPathFromWorkspace', () => {
|
||||
inlineData: {
|
||||
mimeType: 'image/png',
|
||||
data: imageData.toString('base64'),
|
||||
displayName: 'photo.png',
|
||||
},
|
||||
});
|
||||
});
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "@qwen-code/qwen-code-test-utils",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"private": true,
|
||||
"main": "src/index.ts",
|
||||
"license": "Apache-2.0",
|
||||
|
||||
@@ -2,7 +2,7 @@
|
||||
"name": "qwen-code-vscode-ide-companion",
|
||||
"displayName": "Qwen Code Companion",
|
||||
"description": "Enable Qwen Code with direct access to your VS Code workspace.",
|
||||
"version": "0.8.0",
|
||||
"version": "0.7.1",
|
||||
"publisher": "qwenlm",
|
||||
"icon": "assets/icon.png",
|
||||
"repository": {
|
||||
|
||||
Reference in New Issue
Block a user