mirror of
https://github.com/QwenLM/qwen-code.git
synced 2026-01-10 10:59:14 +00:00
Compare commits
13 Commits
v0.6.0-nig
...
fix/integr
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
7233d37bd1 | ||
|
|
f7d04323f3 | ||
|
|
257c6705e1 | ||
|
|
27e7438b75 | ||
|
|
8a3ff8db12 | ||
|
|
26f8b67d4f | ||
|
|
b64d636280 | ||
|
|
781c57b438 | ||
|
|
c53bdde747 | ||
|
|
99db18069d | ||
|
|
a0a5b831d4 | ||
|
|
8f74dd224c | ||
|
|
b931d28f35 |
@@ -1,4 +1,6 @@
|
||||
# Qwen Code overview
|
||||
[](https://npm-compare.com/@qwen-code/qwen-code)
|
||||
[](https://www.npmjs.com/package/@qwen-code/qwen-code)
|
||||
|
||||
> Learn about Qwen Code, Qwen's agentic coding tool that lives in your terminal and helps you turn ideas into code faster than ever before.
|
||||
|
||||
@@ -46,7 +48,7 @@ You'll be prompted to log in on first use. That's it! [Continue with Quickstart
|
||||
|
||||
> [!note]
|
||||
>
|
||||
> **New VS Code Extension (Beta)**: Prefer a graphical interface? Our new **VS Code extension** provides an easy-to-use native IDE experience without requiring terminal familiarity. Simply install from the marketplace and start coding with Qwen Code directly in your sidebar. You can search for **Qwen Code** in the VS Code Marketplace and download it.
|
||||
> **New VS Code Extension (Beta)**: Prefer a graphical interface? Our new **VS Code extension** provides an easy-to-use native IDE experience without requiring terminal familiarity. Simply install from the marketplace and start coding with Qwen Code directly in your sidebar. Download and install the [Qwen Code Companion](https://marketplace.visualstudio.com/items?itemName=qwenlm.qwen-code-vscode-ide-companion) now.
|
||||
|
||||
## What Qwen Code does for you
|
||||
|
||||
|
||||
@@ -5,8 +5,6 @@
|
||||
*/
|
||||
|
||||
import { describe, it, expect } from 'vitest';
|
||||
import { existsSync } from 'node:fs';
|
||||
import * as path from 'node:path';
|
||||
import { TestRig, printDebugInfo, validateModelOutput } from './test-helper.js';
|
||||
|
||||
describe('file-system', () => {
|
||||
@@ -202,8 +200,8 @@ describe('file-system', () => {
|
||||
const readAttempt = toolLogs.find(
|
||||
(log) => log.toolRequest.name === 'read_file',
|
||||
);
|
||||
const writeAttempt = toolLogs.find(
|
||||
(log) => log.toolRequest.name === 'write_file',
|
||||
const editAttempt = toolLogs.find(
|
||||
(log) => log.toolRequest.name === 'edit_file',
|
||||
);
|
||||
const successfulReplace = toolLogs.find(
|
||||
(log) => log.toolRequest.name === 'replace' && log.toolRequest.success,
|
||||
@@ -226,15 +224,15 @@ describe('file-system', () => {
|
||||
|
||||
// CRITICAL: Verify that no matter what the model did, it never successfully
|
||||
// wrote or replaced anything.
|
||||
if (writeAttempt) {
|
||||
if (editAttempt) {
|
||||
console.error(
|
||||
'A write_file attempt was made when no file should be written.',
|
||||
'A edit_file attempt was made when no file should be written.',
|
||||
);
|
||||
printDebugInfo(rig, result);
|
||||
}
|
||||
expect(
|
||||
writeAttempt,
|
||||
'write_file should not have been called',
|
||||
editAttempt,
|
||||
'edit_file should not have been called',
|
||||
).toBeUndefined();
|
||||
|
||||
if (successfulReplace) {
|
||||
@@ -245,12 +243,5 @@ describe('file-system', () => {
|
||||
successfulReplace,
|
||||
'A successful replace should not have occurred',
|
||||
).toBeUndefined();
|
||||
|
||||
// Final verification: ensure the file was not created.
|
||||
const filePath = path.join(rig.testDir!, fileName);
|
||||
const fileExists = existsSync(filePath);
|
||||
expect(fileExists, 'The non-existent file should not be created').toBe(
|
||||
false,
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
@@ -952,7 +952,8 @@ describe('Permission Control (E2E)', () => {
|
||||
TEST_TIMEOUT,
|
||||
);
|
||||
|
||||
it(
|
||||
// FIXME: This test is flaky and sometimes fails with no tool calls.
|
||||
it.skip(
|
||||
'should allow read-only tools without restrictions',
|
||||
async () => {
|
||||
// Create test files for the model to read
|
||||
|
||||
141
package-lock.json
generated
141
package-lock.json
generated
@@ -134,6 +134,36 @@
|
||||
"node": ">=6.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@anthropic-ai/sdk": {
|
||||
"version": "0.36.3",
|
||||
"resolved": "https://registry.npmjs.org/@anthropic-ai/sdk/-/sdk-0.36.3.tgz",
|
||||
"integrity": "sha512-+c0mMLxL/17yFZ4P5+U6bTWiCSFZUKJddrv01ud2aFBWnTPLdRncYV76D3q1tqfnL7aCnhRtykFnoCFzvr4U3Q==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"@types/node": "^18.11.18",
|
||||
"@types/node-fetch": "^2.6.4",
|
||||
"abort-controller": "^3.0.0",
|
||||
"agentkeepalive": "^4.2.1",
|
||||
"form-data-encoder": "1.7.2",
|
||||
"formdata-node": "^4.3.2",
|
||||
"node-fetch": "^2.6.7"
|
||||
}
|
||||
},
|
||||
"node_modules/@anthropic-ai/sdk/node_modules/@types/node": {
|
||||
"version": "18.19.130",
|
||||
"resolved": "https://registry.npmjs.org/@types/node/-/node-18.19.130.tgz",
|
||||
"integrity": "sha512-GRaXQx6jGfL8sKfaIDD6OupbIHBr9jv7Jnaml9tB7l4v068PAOXqfcujMMo5PhbIs6ggR1XODELqahT2R8v0fg==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"undici-types": "~5.26.4"
|
||||
}
|
||||
},
|
||||
"node_modules/@anthropic-ai/sdk/node_modules/undici-types": {
|
||||
"version": "5.26.5",
|
||||
"resolved": "https://registry.npmjs.org/undici-types/-/undici-types-5.26.5.tgz",
|
||||
"integrity": "sha512-JlCMO+ehdEIKqlFxk6IfVoAUVmgz7cU7zD/h9XZ0qzeosSHmUJVOzSQvvYSYWXkFXC+IfLKSIffhv0sVZup6pA==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/@asamuzakjp/css-color": {
|
||||
"version": "3.2.0",
|
||||
"resolved": "https://registry.npmjs.org/@asamuzakjp/css-color/-/css-color-3.2.0.tgz",
|
||||
@@ -3822,6 +3852,16 @@
|
||||
"undici-types": "~6.21.0"
|
||||
}
|
||||
},
|
||||
"node_modules/@types/node-fetch": {
|
||||
"version": "2.6.13",
|
||||
"resolved": "https://registry.npmjs.org/@types/node-fetch/-/node-fetch-2.6.13.tgz",
|
||||
"integrity": "sha512-QGpRVpzSaUs30JBSGPjOg4Uveu384erbHBoT1zeONvyCfwQxIkUshLAOqN/k9EjGviPRmWTTe6aH2qySWKTVSw==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"@types/node": "*",
|
||||
"form-data": "^4.0.4"
|
||||
}
|
||||
},
|
||||
"node_modules/@types/normalize-package-data": {
|
||||
"version": "2.4.4",
|
||||
"resolved": "https://registry.npmjs.org/@types/normalize-package-data/-/normalize-package-data-2.4.4.tgz",
|
||||
@@ -4820,7 +4860,6 @@
|
||||
"version": "3.0.0",
|
||||
"resolved": "https://registry.npmjs.org/abort-controller/-/abort-controller-3.0.0.tgz",
|
||||
"integrity": "sha512-h8lQ8tacZYnR3vNQTgibj+tODHI5/+l06Au2Pcriv/Gmet0eaj4TwWH41sO9wnHDiQsEj19q0drzdWdeAHtweg==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"event-target-shim": "^5.0.0"
|
||||
@@ -4907,6 +4946,18 @@
|
||||
"node": ">= 14"
|
||||
}
|
||||
},
|
||||
"node_modules/agentkeepalive": {
|
||||
"version": "4.6.0",
|
||||
"resolved": "https://registry.npmjs.org/agentkeepalive/-/agentkeepalive-4.6.0.tgz",
|
||||
"integrity": "sha512-kja8j7PjmncONqaTsB8fQ+wE2mSU2DJ9D4XKoJ5PFWIdRMa6SLSN1ff4mOr4jCbfRSsxR4keIiySJU0N9T5hIQ==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"humanize-ms": "^1.2.1"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 8.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/ajv": {
|
||||
"version": "6.12.6",
|
||||
"resolved": "https://registry.npmjs.org/ajv/-/ajv-6.12.6.tgz",
|
||||
@@ -5478,7 +5529,6 @@
|
||||
"version": "0.4.0",
|
||||
"resolved": "https://registry.npmjs.org/asynckit/-/asynckit-0.4.0.tgz",
|
||||
"integrity": "sha512-Oei9OH4tRh0YqU3GxhX79dM/mwVgvbZJaSNaRk+bshkj0S5cfHcgYakreBjrHwatXKbz+IoIdYLxrKim2MjW0Q==",
|
||||
"dev": true,
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/atomically": {
|
||||
@@ -6437,7 +6487,6 @@
|
||||
"version": "1.0.8",
|
||||
"resolved": "https://registry.npmjs.org/combined-stream/-/combined-stream-1.0.8.tgz",
|
||||
"integrity": "sha512-FQN4MRfuJeHf7cBbBMJFXhKSDq+2kAArBlmRBvcvFE5BB1HZKXtSFASDhdlz9zOYwxh8lDdnvmMOe/+5cdoEdg==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"delayed-stream": "~1.0.0"
|
||||
@@ -7063,7 +7112,6 @@
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/delayed-stream/-/delayed-stream-1.0.0.tgz",
|
||||
"integrity": "sha512-ZySD7Nf91aLB0RxL4KGrKHBXl7Eds1DAmEdcoVawXnLD7SDhpNgtuII2aAkg7a7QS41jxPSZ17p4VdGnMHk3MQ==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=0.4.0"
|
||||
@@ -7576,7 +7624,6 @@
|
||||
"version": "2.1.0",
|
||||
"resolved": "https://registry.npmjs.org/es-set-tostringtag/-/es-set-tostringtag-2.1.0.tgz",
|
||||
"integrity": "sha512-j6vWzfrGVfyXxge+O0x5sh6cvxAog0a/4Rdd2K36zCMV5eJ+/+tOAngRO8cODMNWbVRdVlmGZQL2YS3yR8bIUA==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"es-errors": "^1.3.0",
|
||||
@@ -8106,7 +8153,6 @@
|
||||
"version": "5.0.1",
|
||||
"resolved": "https://registry.npmjs.org/event-target-shim/-/event-target-shim-5.0.1.tgz",
|
||||
"integrity": "sha512-i/2XbnSz/uxRCU6+NdVJgKWDTM427+MqYbkQzD321DuCQJUqOuJKIA0IM2+W2xtYHdKOmZ4dR6fExsd4SXL+WQ==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">=6"
|
||||
@@ -8652,7 +8698,6 @@
|
||||
"version": "4.0.4",
|
||||
"resolved": "https://registry.npmjs.org/form-data/-/form-data-4.0.4.tgz",
|
||||
"integrity": "sha512-KrGhL9Q4zjj0kiUt5OO4Mr/A/jlI2jDYs5eHBpYHPcBEVSiipAvn2Ko2HnPe20rmcuuvMHNdZFp+4IlGTMF0Ow==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"asynckit": "^0.4.0",
|
||||
@@ -8665,11 +8710,16 @@
|
||||
"node": ">= 6"
|
||||
}
|
||||
},
|
||||
"node_modules/form-data-encoder": {
|
||||
"version": "1.7.2",
|
||||
"resolved": "https://registry.npmjs.org/form-data-encoder/-/form-data-encoder-1.7.2.tgz",
|
||||
"integrity": "sha512-qfqtYan3rxrnCk1VYaA4H+Ms9xdpPqvLZa6xmMgFvhO32x7/3J/ExcTd6qpxM0vH2GdMI+poehyBZvqfMTto8A==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/form-data/node_modules/mime-types": {
|
||||
"version": "2.1.35",
|
||||
"resolved": "https://registry.npmjs.org/mime-types/-/mime-types-2.1.35.tgz",
|
||||
"integrity": "sha512-ZDY+bPm5zTTF+YpCrAU9nK0UgICYPT0QtT1NZWFv4s++TNkcgVaT0g6+4R2uI4MjQjzysHB1zxuWL50hzaeXiw==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"mime-db": "1.52.0"
|
||||
@@ -8678,6 +8728,28 @@
|
||||
"node": ">= 0.6"
|
||||
}
|
||||
},
|
||||
"node_modules/formdata-node": {
|
||||
"version": "4.4.1",
|
||||
"resolved": "https://registry.npmjs.org/formdata-node/-/formdata-node-4.4.1.tgz",
|
||||
"integrity": "sha512-0iirZp3uVDjVGt9p49aTaqjk84TrglENEDuqfdlZQ1roC9CWlPk6Avf8EEnZNcAqPonwkG35x4n3ww/1THYAeQ==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"node-domexception": "1.0.0",
|
||||
"web-streams-polyfill": "4.0.0-beta.3"
|
||||
},
|
||||
"engines": {
|
||||
"node": ">= 12.20"
|
||||
}
|
||||
},
|
||||
"node_modules/formdata-node/node_modules/web-streams-polyfill": {
|
||||
"version": "4.0.0-beta.3",
|
||||
"resolved": "https://registry.npmjs.org/web-streams-polyfill/-/web-streams-polyfill-4.0.0-beta.3.tgz",
|
||||
"integrity": "sha512-QW95TCTaHmsYfHDybGMwO5IJIM93I/6vTRk+daHTWFPhwh+C8Cg7j7XyKrwrj8Ib6vYXe0ocYNrmzY4xAAN6ug==",
|
||||
"license": "MIT",
|
||||
"engines": {
|
||||
"node": ">= 14"
|
||||
}
|
||||
},
|
||||
"node_modules/formdata-polyfill": {
|
||||
"version": "4.0.10",
|
||||
"resolved": "https://registry.npmjs.org/formdata-polyfill/-/formdata-polyfill-4.0.10.tgz",
|
||||
@@ -9262,7 +9334,6 @@
|
||||
"version": "1.0.2",
|
||||
"resolved": "https://registry.npmjs.org/has-tostringtag/-/has-tostringtag-1.0.2.tgz",
|
||||
"integrity": "sha512-NqADB8VjPFLM2V0VvHUewwwsw0ZWBaIdgo+ieHtK3hasLz4qeCRjYcqfB6AQrBggRKppKF8L52/VqdVsO47Dlw==",
|
||||
"dev": true,
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"has-symbols": "^1.0.3"
|
||||
@@ -9441,6 +9512,15 @@
|
||||
"node": ">=16.17.0"
|
||||
}
|
||||
},
|
||||
"node_modules/humanize-ms": {
|
||||
"version": "1.2.1",
|
||||
"resolved": "https://registry.npmjs.org/humanize-ms/-/humanize-ms-1.2.1.tgz",
|
||||
"integrity": "sha512-Fl70vYtsAFb/C06PTS9dZBo7ihau+Tu/DNCk/OyHhea07S+aeMWpFFkUaXRa8fI+ScZbEI8dfSxwY7gxZ9SAVQ==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"ms": "^2.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/husky": {
|
||||
"version": "9.1.7",
|
||||
"resolved": "https://registry.npmjs.org/husky/-/husky-9.1.7.tgz",
|
||||
@@ -11940,6 +12020,48 @@
|
||||
"node": ">=10.5.0"
|
||||
}
|
||||
},
|
||||
"node_modules/node-fetch": {
|
||||
"version": "2.7.0",
|
||||
"resolved": "https://registry.npmjs.org/node-fetch/-/node-fetch-2.7.0.tgz",
|
||||
"integrity": "sha512-c4FRfUm/dbcWZ7U+1Wq0AwCyFL+3nt2bEw05wfxSz+DWpWsitgmSgYmy2dQdWyKC1694ELPqMs/YzUSNozLt8A==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"whatwg-url": "^5.0.0"
|
||||
},
|
||||
"engines": {
|
||||
"node": "4.x || >=6.0.0"
|
||||
},
|
||||
"peerDependencies": {
|
||||
"encoding": "^0.1.0"
|
||||
},
|
||||
"peerDependenciesMeta": {
|
||||
"encoding": {
|
||||
"optional": true
|
||||
}
|
||||
}
|
||||
},
|
||||
"node_modules/node-fetch/node_modules/tr46": {
|
||||
"version": "0.0.3",
|
||||
"resolved": "https://registry.npmjs.org/tr46/-/tr46-0.0.3.tgz",
|
||||
"integrity": "sha512-N3WMsuqV66lT30CrXNbEjx4GEwlow3v6rr4mCcv6prnfwhS01rkgyFdjPNBYd9br7LpXV1+Emh01fHnq2Gdgrw==",
|
||||
"license": "MIT"
|
||||
},
|
||||
"node_modules/node-fetch/node_modules/webidl-conversions": {
|
||||
"version": "3.0.1",
|
||||
"resolved": "https://registry.npmjs.org/webidl-conversions/-/webidl-conversions-3.0.1.tgz",
|
||||
"integrity": "sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ==",
|
||||
"license": "BSD-2-Clause"
|
||||
},
|
||||
"node_modules/node-fetch/node_modules/whatwg-url": {
|
||||
"version": "5.0.0",
|
||||
"resolved": "https://registry.npmjs.org/whatwg-url/-/whatwg-url-5.0.0.tgz",
|
||||
"integrity": "sha512-saE57nupxk6v3HY35+jzBwYa0rKSy0XR8JSxZPwgLr7ys0IBzhGviA1/TUGJLmSVqs8pb9AnvICXEuOHLprYTw==",
|
||||
"license": "MIT",
|
||||
"dependencies": {
|
||||
"tr46": "~0.0.3",
|
||||
"webidl-conversions": "^3.0.0"
|
||||
}
|
||||
},
|
||||
"node_modules/node-pty": {
|
||||
"version": "1.0.0",
|
||||
"resolved": "https://registry.npmjs.org/node-pty/-/node-pty-1.0.0.tgz",
|
||||
@@ -17834,6 +17956,7 @@
|
||||
"version": "0.6.0",
|
||||
"hasInstallScript": true,
|
||||
"dependencies": {
|
||||
"@anthropic-ai/sdk": "^0.36.1",
|
||||
"@google/genai": "1.30.0",
|
||||
"@modelcontextprotocol/sdk": "^1.25.1",
|
||||
"@opentelemetry/api": "^1.9.0",
|
||||
|
||||
@@ -26,6 +26,20 @@ export function validateAuthMethod(authMethod: string): string | null {
|
||||
return null;
|
||||
}
|
||||
|
||||
if (authMethod === AuthType.USE_ANTHROPIC) {
|
||||
const hasApiKey = process.env['ANTHROPIC_API_KEY'];
|
||||
if (!hasApiKey) {
|
||||
return 'ANTHROPIC_API_KEY environment variable not found.';
|
||||
}
|
||||
|
||||
const hasBaseUrl = process.env['ANTHROPIC_BASE_URL'];
|
||||
if (!hasBaseUrl) {
|
||||
return 'ANTHROPIC_BASE_URL environment variable not found.';
|
||||
}
|
||||
|
||||
return null;
|
||||
}
|
||||
|
||||
if (authMethod === AuthType.USE_GEMINI) {
|
||||
const hasApiKey = process.env['GEMINI_API_KEY'];
|
||||
if (!hasApiKey) {
|
||||
|
||||
@@ -2114,7 +2114,14 @@ describe('loadCliConfig model selection', () => {
|
||||
});
|
||||
|
||||
it('always prefers model from argvs', async () => {
|
||||
process.argv = ['node', 'script.js', '--model', 'qwen3-coder-plus'];
|
||||
process.argv = [
|
||||
'node',
|
||||
'script.js',
|
||||
'--auth-type',
|
||||
'openai',
|
||||
'--model',
|
||||
'qwen3-coder-plus',
|
||||
];
|
||||
const argv = await parseArguments({} as Settings);
|
||||
const config = await loadCliConfig(
|
||||
{
|
||||
@@ -2134,7 +2141,14 @@ describe('loadCliConfig model selection', () => {
|
||||
});
|
||||
|
||||
it('selects the model from argvs if provided', async () => {
|
||||
process.argv = ['node', 'script.js', '--model', 'qwen3-coder-plus'];
|
||||
process.argv = [
|
||||
'node',
|
||||
'script.js',
|
||||
'--auth-type',
|
||||
'openai',
|
||||
'--model',
|
||||
'qwen3-coder-plus',
|
||||
];
|
||||
const argv = await parseArguments({} as Settings);
|
||||
const config = await loadCliConfig(
|
||||
{
|
||||
|
||||
@@ -468,6 +468,7 @@ export async function parseArguments(settings: Settings): Promise<CliArgs> {
|
||||
type: 'string',
|
||||
choices: [
|
||||
AuthType.USE_OPENAI,
|
||||
AuthType.USE_ANTHROPIC,
|
||||
AuthType.QWEN_OAUTH,
|
||||
AuthType.USE_GEMINI,
|
||||
AuthType.USE_VERTEX_AI,
|
||||
@@ -876,11 +877,30 @@ export async function loadCliConfig(
|
||||
);
|
||||
}
|
||||
|
||||
const selectedAuthType =
|
||||
(argv.authType as AuthType | undefined) ||
|
||||
settings.security?.auth?.selectedType;
|
||||
|
||||
const apiKey =
|
||||
(selectedAuthType === AuthType.USE_OPENAI
|
||||
? argv.openaiApiKey ||
|
||||
process.env['OPENAI_API_KEY'] ||
|
||||
settings.security?.auth?.apiKey
|
||||
: '') || '';
|
||||
const baseUrl =
|
||||
(selectedAuthType === AuthType.USE_OPENAI
|
||||
? argv.openaiBaseUrl ||
|
||||
process.env['OPENAI_BASE_URL'] ||
|
||||
settings.security?.auth?.baseUrl
|
||||
: '') || '';
|
||||
const resolvedModel =
|
||||
argv.model ||
|
||||
process.env['OPENAI_MODEL'] ||
|
||||
process.env['QWEN_MODEL'] ||
|
||||
settings.model?.name;
|
||||
(selectedAuthType === AuthType.USE_OPENAI
|
||||
? process.env['OPENAI_MODEL'] ||
|
||||
process.env['QWEN_MODEL'] ||
|
||||
settings.model?.name
|
||||
: '') ||
|
||||
'';
|
||||
|
||||
const sandboxConfig = await loadSandboxConfig(settings, argv);
|
||||
const screenReader =
|
||||
@@ -967,23 +987,15 @@ export async function loadCliConfig(
|
||||
extensions: allExtensions,
|
||||
blockedMcpServers,
|
||||
noBrowser: !!process.env['NO_BROWSER'],
|
||||
authType:
|
||||
(argv.authType as AuthType | undefined) ||
|
||||
settings.security?.auth?.selectedType,
|
||||
authType: selectedAuthType,
|
||||
inputFormat,
|
||||
outputFormat,
|
||||
includePartialMessages,
|
||||
generationConfig: {
|
||||
...(settings.model?.generationConfig || {}),
|
||||
model: resolvedModel,
|
||||
apiKey:
|
||||
argv.openaiApiKey ||
|
||||
process.env['OPENAI_API_KEY'] ||
|
||||
settings.security?.auth?.apiKey,
|
||||
baseUrl:
|
||||
argv.openaiBaseUrl ||
|
||||
process.env['OPENAI_BASE_URL'] ||
|
||||
settings.security?.auth?.baseUrl,
|
||||
apiKey,
|
||||
baseUrl,
|
||||
enableOpenAILogging:
|
||||
(typeof argv.openaiLogging === 'undefined'
|
||||
? settings.model?.enableOpenAILogging
|
||||
|
||||
@@ -228,6 +228,7 @@ export const useAuthCommand = (
|
||||
![
|
||||
AuthType.QWEN_OAUTH,
|
||||
AuthType.USE_OPENAI,
|
||||
AuthType.USE_ANTHROPIC,
|
||||
AuthType.USE_GEMINI,
|
||||
AuthType.USE_VERTEX_AI,
|
||||
].includes(defaultAuthType as AuthType)
|
||||
@@ -240,6 +241,7 @@ export const useAuthCommand = (
|
||||
validValues: [
|
||||
AuthType.QWEN_OAUTH,
|
||||
AuthType.USE_OPENAI,
|
||||
AuthType.USE_ANTHROPIC,
|
||||
AuthType.USE_GEMINI,
|
||||
AuthType.USE_VERTEX_AI,
|
||||
].join(', '),
|
||||
|
||||
@@ -526,10 +526,15 @@ export const useGeminiStream = (
|
||||
return currentThoughtBuffer;
|
||||
}
|
||||
|
||||
const newThoughtBuffer = currentThoughtBuffer + thoughtText;
|
||||
let newThoughtBuffer = currentThoughtBuffer + thoughtText;
|
||||
|
||||
const pendingType = pendingHistoryItemRef.current?.type;
|
||||
const isPendingThought =
|
||||
pendingType === 'gemini_thought' ||
|
||||
pendingType === 'gemini_thought_content';
|
||||
|
||||
// If we're not already showing a thought, start a new one
|
||||
if (pendingHistoryItemRef.current?.type !== 'gemini_thought') {
|
||||
if (!isPendingThought) {
|
||||
// If there's a pending non-thought item, finalize it first
|
||||
if (pendingHistoryItemRef.current) {
|
||||
addItem(pendingHistoryItemRef.current, userMessageTimestamp);
|
||||
@@ -537,11 +542,37 @@ export const useGeminiStream = (
|
||||
setPendingHistoryItem({ type: 'gemini_thought', text: '' });
|
||||
}
|
||||
|
||||
// Update the existing thought message with accumulated content
|
||||
setPendingHistoryItem({
|
||||
type: 'gemini_thought',
|
||||
text: newThoughtBuffer,
|
||||
});
|
||||
// Split large thought messages for better rendering performance (same rationale
|
||||
// as regular content streaming). This helps avoid terminal flicker caused by
|
||||
// constantly re-rendering an ever-growing "pending" block.
|
||||
const splitPoint = findLastSafeSplitPoint(newThoughtBuffer);
|
||||
const nextPendingType: 'gemini_thought' | 'gemini_thought_content' =
|
||||
isPendingThought && pendingType === 'gemini_thought_content'
|
||||
? 'gemini_thought_content'
|
||||
: 'gemini_thought';
|
||||
|
||||
if (splitPoint === newThoughtBuffer.length) {
|
||||
// Update the existing thought message with accumulated content
|
||||
setPendingHistoryItem({
|
||||
type: nextPendingType,
|
||||
text: newThoughtBuffer,
|
||||
});
|
||||
} else {
|
||||
const beforeText = newThoughtBuffer.substring(0, splitPoint);
|
||||
const afterText = newThoughtBuffer.substring(splitPoint);
|
||||
addItem(
|
||||
{
|
||||
type: nextPendingType,
|
||||
text: beforeText,
|
||||
},
|
||||
userMessageTimestamp,
|
||||
);
|
||||
setPendingHistoryItem({
|
||||
type: 'gemini_thought_content',
|
||||
text: afterText,
|
||||
});
|
||||
newThoughtBuffer = afterText;
|
||||
}
|
||||
|
||||
// Also update the thought state for the loading indicator
|
||||
mergeThought(eventValue);
|
||||
|
||||
@@ -60,6 +60,11 @@ export function getOpenAIAvailableModelFromEnv(): AvailableModel | null {
|
||||
return id ? { id, label: id } : null;
|
||||
}
|
||||
|
||||
export function getAnthropicAvailableModelFromEnv(): AvailableModel | null {
|
||||
const id = process.env['ANTHROPIC_MODEL']?.trim();
|
||||
return id ? { id, label: id } : null;
|
||||
}
|
||||
|
||||
export function getAvailableModelsForAuthType(
|
||||
authType: AuthType,
|
||||
): AvailableModel[] {
|
||||
@@ -70,6 +75,10 @@ export function getAvailableModelsForAuthType(
|
||||
const openAIModel = getOpenAIAvailableModelFromEnv();
|
||||
return openAIModel ? [openAIModel] : [];
|
||||
}
|
||||
case AuthType.USE_ANTHROPIC: {
|
||||
const anthropicModel = getAnthropicAvailableModelFromEnv();
|
||||
return anthropicModel ? [anthropicModel] : [];
|
||||
}
|
||||
default:
|
||||
// For other auth types, return empty array for now
|
||||
// This can be expanded later according to the design doc
|
||||
|
||||
@@ -20,6 +20,11 @@ const makeConfig = (tools: Record<string, AnyDeclarativeTool>) =>
|
||||
getToolRegistry: () => ({
|
||||
getTool: (name: string) => tools[name],
|
||||
}),
|
||||
getContentGenerator: () => ({
|
||||
// Default to showing full thinking content during resume unless explicitly
|
||||
// summarized; tests don't care about summarized thinking behavior.
|
||||
useSummarizedThinking: () => false,
|
||||
}),
|
||||
}) as unknown as Config;
|
||||
|
||||
describe('resumeHistoryUtils', () => {
|
||||
|
||||
@@ -204,7 +204,11 @@ function convertToHistoryItems(
|
||||
const parts = record.message?.parts as Part[] | undefined;
|
||||
|
||||
// Extract thought content
|
||||
const thoughtText = extractThoughtTextFromParts(parts);
|
||||
const thoughtText = !config
|
||||
.getContentGenerator()
|
||||
.useSummarizedThinking()
|
||||
? extractThoughtTextFromParts(parts)
|
||||
: '';
|
||||
|
||||
// Extract text content (non-function-call, non-thought)
|
||||
const text = extractTextFromParts(parts);
|
||||
|
||||
@@ -153,7 +153,8 @@ export async function getExtendedSystemInfo(
|
||||
|
||||
// Get base URL if using OpenAI auth
|
||||
const baseUrl =
|
||||
baseInfo.selectedAuthType === AuthType.USE_OPENAI
|
||||
baseInfo.selectedAuthType === AuthType.USE_OPENAI ||
|
||||
baseInfo.selectedAuthType === AuthType.USE_ANTHROPIC
|
||||
? context.services.config?.getContentGeneratorConfig()?.baseUrl
|
||||
: undefined;
|
||||
|
||||
|
||||
@@ -19,6 +19,9 @@ describe('validateNonInterActiveAuth', () => {
|
||||
let originalEnvVertexAi: string | undefined;
|
||||
let originalEnvGcp: string | undefined;
|
||||
let originalEnvOpenAiApiKey: string | undefined;
|
||||
let originalEnvQwenOauth: string | undefined;
|
||||
let originalEnvGoogleApiKey: string | undefined;
|
||||
let originalEnvAnthropicApiKey: string | undefined;
|
||||
let consoleErrorSpy: ReturnType<typeof vi.spyOn>;
|
||||
let processExitSpy: ReturnType<typeof vi.spyOn<[code?: number], never>>;
|
||||
let refreshAuthMock: ReturnType<typeof vi.fn>;
|
||||
@@ -29,10 +32,16 @@ describe('validateNonInterActiveAuth', () => {
|
||||
originalEnvVertexAi = process.env['GOOGLE_GENAI_USE_VERTEXAI'];
|
||||
originalEnvGcp = process.env['GOOGLE_GENAI_USE_GCA'];
|
||||
originalEnvOpenAiApiKey = process.env['OPENAI_API_KEY'];
|
||||
originalEnvQwenOauth = process.env['QWEN_OAUTH'];
|
||||
originalEnvGoogleApiKey = process.env['GOOGLE_API_KEY'];
|
||||
originalEnvAnthropicApiKey = process.env['ANTHROPIC_API_KEY'];
|
||||
delete process.env['GEMINI_API_KEY'];
|
||||
delete process.env['GOOGLE_GENAI_USE_VERTEXAI'];
|
||||
delete process.env['GOOGLE_GENAI_USE_GCA'];
|
||||
delete process.env['OPENAI_API_KEY'];
|
||||
delete process.env['QWEN_OAUTH'];
|
||||
delete process.env['GOOGLE_API_KEY'];
|
||||
delete process.env['ANTHROPIC_API_KEY'];
|
||||
consoleErrorSpy = vi.spyOn(console, 'error').mockImplementation(() => {});
|
||||
processExitSpy = vi.spyOn(process, 'exit').mockImplementation((code) => {
|
||||
throw new Error(`process.exit(${code}) called`);
|
||||
@@ -80,6 +89,21 @@ describe('validateNonInterActiveAuth', () => {
|
||||
} else {
|
||||
delete process.env['OPENAI_API_KEY'];
|
||||
}
|
||||
if (originalEnvQwenOauth !== undefined) {
|
||||
process.env['QWEN_OAUTH'] = originalEnvQwenOauth;
|
||||
} else {
|
||||
delete process.env['QWEN_OAUTH'];
|
||||
}
|
||||
if (originalEnvGoogleApiKey !== undefined) {
|
||||
process.env['GOOGLE_API_KEY'] = originalEnvGoogleApiKey;
|
||||
} else {
|
||||
delete process.env['GOOGLE_API_KEY'];
|
||||
}
|
||||
if (originalEnvAnthropicApiKey !== undefined) {
|
||||
process.env['ANTHROPIC_API_KEY'] = originalEnvAnthropicApiKey;
|
||||
} else {
|
||||
delete process.env['ANTHROPIC_API_KEY'];
|
||||
}
|
||||
vi.restoreAllMocks();
|
||||
});
|
||||
|
||||
|
||||
@@ -27,6 +27,9 @@ function getAuthTypeFromEnv(): AuthType | undefined {
|
||||
if (process.env['GOOGLE_API_KEY']) {
|
||||
return AuthType.USE_VERTEX_AI;
|
||||
}
|
||||
if (process.env['ANTHROPIC_API_KEY']) {
|
||||
return AuthType.USE_ANTHROPIC;
|
||||
}
|
||||
|
||||
return undefined;
|
||||
}
|
||||
|
||||
@@ -23,6 +23,7 @@
|
||||
"scripts/postinstall.js"
|
||||
],
|
||||
"dependencies": {
|
||||
"@anthropic-ai/sdk": "^0.36.1",
|
||||
"@google/genai": "1.30.0",
|
||||
"@modelcontextprotocol/sdk": "^1.25.1",
|
||||
"@opentelemetry/api": "^1.9.0",
|
||||
|
||||
@@ -16,7 +16,6 @@ import {
|
||||
QwenLogger,
|
||||
} from '../telemetry/index.js';
|
||||
import type { ContentGeneratorConfig } from '../core/contentGenerator.js';
|
||||
import { DEFAULT_DASHSCOPE_BASE_URL } from '../core/openaiContentGenerator/constants.js';
|
||||
import {
|
||||
AuthType,
|
||||
createContentGeneratorConfig,
|
||||
@@ -273,7 +272,7 @@ describe('Server Config (config.ts)', () => {
|
||||
authType,
|
||||
{
|
||||
model: MODEL,
|
||||
baseUrl: DEFAULT_DASHSCOPE_BASE_URL,
|
||||
baseUrl: undefined,
|
||||
},
|
||||
);
|
||||
// Verify that contentGeneratorConfig is updated
|
||||
|
||||
@@ -96,7 +96,6 @@ import {
|
||||
} from './constants.js';
|
||||
import { DEFAULT_QWEN_EMBEDDING_MODEL, DEFAULT_QWEN_MODEL } from './models.js';
|
||||
import { Storage } from './storage.js';
|
||||
import { DEFAULT_DASHSCOPE_BASE_URL } from '../core/openaiContentGenerator/constants.js';
|
||||
import { ChatRecordingService } from '../services/chatRecordingService.js';
|
||||
import {
|
||||
SessionService,
|
||||
@@ -574,7 +573,7 @@ export class Config {
|
||||
this._generationConfig = {
|
||||
model: params.model,
|
||||
...(params.generationConfig || {}),
|
||||
baseUrl: params.generationConfig?.baseUrl || DEFAULT_DASHSCOPE_BASE_URL,
|
||||
baseUrl: params.generationConfig?.baseUrl,
|
||||
};
|
||||
this.contentGeneratorConfig = this
|
||||
._generationConfig as ContentGeneratorConfig;
|
||||
|
||||
@@ -0,0 +1,500 @@
|
||||
/**
|
||||
* @license
|
||||
* Copyright 2025 Qwen
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
import { afterEach, beforeEach, describe, expect, it, vi } from 'vitest';
|
||||
import type {
|
||||
CountTokensParameters,
|
||||
GenerateContentParameters,
|
||||
} from '@google/genai';
|
||||
import { FinishReason, GenerateContentResponse } from '@google/genai';
|
||||
|
||||
// Mock the request tokenizer module BEFORE importing the class that uses it.
|
||||
const mockTokenizer = {
|
||||
calculateTokens: vi.fn(),
|
||||
dispose: vi.fn(),
|
||||
};
|
||||
|
||||
vi.mock('../../utils/request-tokenizer/index.js', () => ({
|
||||
getDefaultTokenizer: vi.fn(() => mockTokenizer),
|
||||
DefaultRequestTokenizer: vi.fn(() => mockTokenizer),
|
||||
disposeDefaultTokenizer: vi.fn(),
|
||||
}));
|
||||
|
||||
type AnthropicCreateArgs = [unknown, { signal?: AbortSignal }?];
|
||||
|
||||
const anthropicMockState: {
|
||||
constructorOptions?: Record<string, unknown>;
|
||||
lastCreateArgs?: AnthropicCreateArgs;
|
||||
createImpl: ReturnType<typeof vi.fn>;
|
||||
} = {
|
||||
constructorOptions: undefined,
|
||||
lastCreateArgs: undefined,
|
||||
createImpl: vi.fn(),
|
||||
};
|
||||
|
||||
vi.mock('@anthropic-ai/sdk', () => {
|
||||
class AnthropicMock {
|
||||
messages: { create: (...args: AnthropicCreateArgs) => unknown };
|
||||
|
||||
constructor(options: Record<string, unknown>) {
|
||||
anthropicMockState.constructorOptions = options;
|
||||
this.messages = {
|
||||
create: (...args: AnthropicCreateArgs) => {
|
||||
anthropicMockState.lastCreateArgs = args;
|
||||
return anthropicMockState.createImpl(...args);
|
||||
},
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
default: AnthropicMock,
|
||||
__anthropicState: anthropicMockState,
|
||||
};
|
||||
});
|
||||
|
||||
// Now import the modules that depend on the mocked modules.
|
||||
import type { Config } from '../../config/config.js';
|
||||
|
||||
const importGenerator = async (): Promise<{
|
||||
AnthropicContentGenerator: typeof import('./anthropicContentGenerator.js').AnthropicContentGenerator;
|
||||
}> => import('./anthropicContentGenerator.js');
|
||||
|
||||
const importConverter = async (): Promise<{
|
||||
AnthropicContentConverter: typeof import('./converter.js').AnthropicContentConverter;
|
||||
}> => import('./converter.js');
|
||||
|
||||
describe('AnthropicContentGenerator', () => {
|
||||
let mockConfig: Config;
|
||||
let anthropicState: {
|
||||
constructorOptions?: Record<string, unknown>;
|
||||
lastCreateArgs?: AnthropicCreateArgs;
|
||||
createImpl: ReturnType<typeof vi.fn>;
|
||||
};
|
||||
|
||||
beforeEach(async () => {
|
||||
vi.clearAllMocks();
|
||||
vi.resetModules();
|
||||
|
||||
mockTokenizer.calculateTokens.mockResolvedValue({
|
||||
totalTokens: 50,
|
||||
breakdown: {
|
||||
textTokens: 50,
|
||||
imageTokens: 0,
|
||||
audioTokens: 0,
|
||||
otherTokens: 0,
|
||||
},
|
||||
processingTime: 1,
|
||||
});
|
||||
anthropicState = anthropicMockState;
|
||||
|
||||
anthropicState.createImpl.mockReset();
|
||||
anthropicState.lastCreateArgs = undefined;
|
||||
anthropicState.constructorOptions = undefined;
|
||||
|
||||
mockConfig = {
|
||||
getCliVersion: vi.fn().mockReturnValue('1.2.3'),
|
||||
} as unknown as Config;
|
||||
});
|
||||
|
||||
afterEach(() => {
|
||||
vi.restoreAllMocks();
|
||||
});
|
||||
|
||||
it('passes a QwenCode User-Agent header to the Anthropic SDK', async () => {
|
||||
const { AnthropicContentGenerator } = await importGenerator();
|
||||
void new AnthropicContentGenerator(
|
||||
{
|
||||
model: 'claude-test',
|
||||
apiKey: 'test-key',
|
||||
baseUrl: 'https://example.invalid',
|
||||
timeout: 10_000,
|
||||
maxRetries: 2,
|
||||
samplingParams: {},
|
||||
schemaCompliance: 'auto',
|
||||
},
|
||||
mockConfig,
|
||||
);
|
||||
|
||||
const headers = (anthropicState.constructorOptions?.['defaultHeaders'] ||
|
||||
{}) as Record<string, string>;
|
||||
expect(headers['User-Agent']).toContain('QwenCode/1.2.3');
|
||||
expect(headers['User-Agent']).toContain(
|
||||
`(${process.platform}; ${process.arch})`,
|
||||
);
|
||||
});
|
||||
|
||||
it('adds the effort beta header when reasoning.effort is set', async () => {
|
||||
const { AnthropicContentGenerator } = await importGenerator();
|
||||
void new AnthropicContentGenerator(
|
||||
{
|
||||
model: 'claude-test',
|
||||
apiKey: 'test-key',
|
||||
baseUrl: 'https://example.invalid',
|
||||
timeout: 10_000,
|
||||
maxRetries: 2,
|
||||
samplingParams: {},
|
||||
schemaCompliance: 'auto',
|
||||
reasoning: { effort: 'medium' },
|
||||
},
|
||||
mockConfig,
|
||||
);
|
||||
|
||||
const headers = (anthropicState.constructorOptions?.['defaultHeaders'] ||
|
||||
{}) as Record<string, string>;
|
||||
expect(headers['anthropic-beta']).toContain('effort-2025-11-24');
|
||||
});
|
||||
|
||||
it('does not add the effort beta header when reasoning.effort is not set', async () => {
|
||||
const { AnthropicContentGenerator } = await importGenerator();
|
||||
void new AnthropicContentGenerator(
|
||||
{
|
||||
model: 'claude-test',
|
||||
apiKey: 'test-key',
|
||||
baseUrl: 'https://example.invalid',
|
||||
timeout: 10_000,
|
||||
maxRetries: 2,
|
||||
samplingParams: {},
|
||||
schemaCompliance: 'auto',
|
||||
},
|
||||
mockConfig,
|
||||
);
|
||||
|
||||
const headers = (anthropicState.constructorOptions?.['defaultHeaders'] ||
|
||||
{}) as Record<string, string>;
|
||||
expect(headers['anthropic-beta']).not.toContain('effort-2025-11-24');
|
||||
});
|
||||
|
||||
it('omits the anthropic beta header when reasoning is disabled', async () => {
|
||||
const { AnthropicContentGenerator } = await importGenerator();
|
||||
void new AnthropicContentGenerator(
|
||||
{
|
||||
model: 'claude-test',
|
||||
apiKey: 'test-key',
|
||||
baseUrl: 'https://example.invalid',
|
||||
timeout: 10_000,
|
||||
maxRetries: 2,
|
||||
samplingParams: {},
|
||||
schemaCompliance: 'auto',
|
||||
reasoning: false,
|
||||
},
|
||||
mockConfig,
|
||||
);
|
||||
|
||||
const headers = (anthropicState.constructorOptions?.['defaultHeaders'] ||
|
||||
{}) as Record<string, string>;
|
||||
expect(headers['anthropic-beta']).toBeUndefined();
|
||||
});
|
||||
|
||||
describe('generateContent', () => {
|
||||
it('builds request with config sampling params (config overrides request) and thinking budget', async () => {
|
||||
const { AnthropicContentConverter } = await importConverter();
|
||||
const { AnthropicContentGenerator } = await importGenerator();
|
||||
|
||||
const convertResponseSpy = vi
|
||||
.spyOn(
|
||||
AnthropicContentConverter.prototype,
|
||||
'convertAnthropicResponseToGemini',
|
||||
)
|
||||
.mockReturnValue(
|
||||
(() => {
|
||||
const r = new GenerateContentResponse();
|
||||
r.responseId = 'gemini-1';
|
||||
return r;
|
||||
})(),
|
||||
);
|
||||
|
||||
anthropicState.createImpl.mockResolvedValue({
|
||||
id: 'anthropic-1',
|
||||
model: 'claude-test',
|
||||
content: [{ type: 'text', text: 'hi' }],
|
||||
});
|
||||
|
||||
const generator = new AnthropicContentGenerator(
|
||||
{
|
||||
model: 'claude-test',
|
||||
apiKey: 'test-key',
|
||||
baseUrl: 'https://example.invalid',
|
||||
timeout: 10_000,
|
||||
maxRetries: 2,
|
||||
samplingParams: {
|
||||
temperature: 0.7,
|
||||
max_tokens: 1000,
|
||||
top_p: 0.9,
|
||||
top_k: 20,
|
||||
},
|
||||
schemaCompliance: 'auto',
|
||||
reasoning: { effort: 'high', budget_tokens: 1000 },
|
||||
},
|
||||
mockConfig,
|
||||
);
|
||||
|
||||
const abortController = new AbortController();
|
||||
const request: GenerateContentParameters = {
|
||||
model: 'models/ignored',
|
||||
contents: 'Hello',
|
||||
config: {
|
||||
temperature: 0.1,
|
||||
maxOutputTokens: 200,
|
||||
topP: 0.5,
|
||||
topK: 5,
|
||||
abortSignal: abortController.signal,
|
||||
},
|
||||
};
|
||||
|
||||
const result = await generator.generateContent(request);
|
||||
expect(result.responseId).toBe('gemini-1');
|
||||
|
||||
expect(anthropicState.lastCreateArgs).toBeDefined();
|
||||
const [anthropicRequest, options] =
|
||||
anthropicState.lastCreateArgs as AnthropicCreateArgs;
|
||||
|
||||
expect(options?.signal).toBe(abortController.signal);
|
||||
|
||||
expect(anthropicRequest).toEqual(
|
||||
expect.objectContaining({
|
||||
model: 'claude-test',
|
||||
max_tokens: 1000,
|
||||
temperature: 0.7,
|
||||
top_p: 0.9,
|
||||
top_k: 20,
|
||||
thinking: { type: 'enabled', budget_tokens: 1000 },
|
||||
output_config: { effort: 'high' },
|
||||
}),
|
||||
);
|
||||
|
||||
expect(convertResponseSpy).toHaveBeenCalledTimes(1);
|
||||
});
|
||||
|
||||
it('omits thinking when request.config.thinkingConfig.includeThoughts is false', async () => {
|
||||
const { AnthropicContentGenerator } = await importGenerator();
|
||||
anthropicState.createImpl.mockResolvedValue({
|
||||
id: 'anthropic-1',
|
||||
model: 'claude-test',
|
||||
content: [{ type: 'text', text: 'hi' }],
|
||||
});
|
||||
|
||||
const generator = new AnthropicContentGenerator(
|
||||
{
|
||||
model: 'claude-test',
|
||||
apiKey: 'test-key',
|
||||
timeout: 10_000,
|
||||
maxRetries: 2,
|
||||
samplingParams: { max_tokens: 500 },
|
||||
schemaCompliance: 'auto',
|
||||
reasoning: { effort: 'high' },
|
||||
},
|
||||
mockConfig,
|
||||
);
|
||||
|
||||
await generator.generateContent({
|
||||
model: 'models/ignored',
|
||||
contents: 'Hello',
|
||||
config: { thinkingConfig: { includeThoughts: false } },
|
||||
} as unknown as GenerateContentParameters);
|
||||
|
||||
const [anthropicRequest] =
|
||||
anthropicState.lastCreateArgs as AnthropicCreateArgs;
|
||||
expect(anthropicRequest).toEqual(
|
||||
expect.not.objectContaining({ thinking: expect.anything() }),
|
||||
);
|
||||
});
|
||||
});
|
||||
|
||||
describe('countTokens', () => {
|
||||
it('counts tokens using the request tokenizer', async () => {
|
||||
const { AnthropicContentGenerator } = await importGenerator();
|
||||
const generator = new AnthropicContentGenerator(
|
||||
{
|
||||
model: 'claude-test',
|
||||
apiKey: 'test-key',
|
||||
timeout: 10_000,
|
||||
maxRetries: 2,
|
||||
samplingParams: {},
|
||||
schemaCompliance: 'auto',
|
||||
},
|
||||
mockConfig,
|
||||
);
|
||||
|
||||
const request: CountTokensParameters = {
|
||||
contents: [{ role: 'user', parts: [{ text: 'Hello world' }] }],
|
||||
model: 'claude-test',
|
||||
};
|
||||
|
||||
const result = await generator.countTokens(request);
|
||||
expect(mockTokenizer.calculateTokens).toHaveBeenCalledWith(request, {
|
||||
textEncoding: 'cl100k_base',
|
||||
});
|
||||
expect(result.totalTokens).toBe(50);
|
||||
});
|
||||
|
||||
it('falls back to character approximation when tokenizer throws', async () => {
|
||||
const { AnthropicContentGenerator } = await importGenerator();
|
||||
mockTokenizer.calculateTokens.mockRejectedValueOnce(new Error('boom'));
|
||||
const generator = new AnthropicContentGenerator(
|
||||
{
|
||||
model: 'claude-test',
|
||||
apiKey: 'test-key',
|
||||
timeout: 10_000,
|
||||
maxRetries: 2,
|
||||
samplingParams: {},
|
||||
schemaCompliance: 'auto',
|
||||
},
|
||||
mockConfig,
|
||||
);
|
||||
|
||||
const request: CountTokensParameters = {
|
||||
contents: [{ role: 'user', parts: [{ text: 'Hello' }] }],
|
||||
model: 'claude-test',
|
||||
};
|
||||
|
||||
const content = JSON.stringify(request.contents);
|
||||
const expected = Math.ceil(content.length / 4);
|
||||
const result = await generator.countTokens(request);
|
||||
expect(result.totalTokens).toBe(expected);
|
||||
});
|
||||
});
|
||||
|
||||
describe('generateContentStream', () => {
|
||||
it('requests stream=true and converts streamed events into Gemini chunks', async () => {
|
||||
const { AnthropicContentGenerator } = await importGenerator();
|
||||
anthropicState.createImpl.mockResolvedValue(
|
||||
(async function* () {
|
||||
yield {
|
||||
type: 'message_start',
|
||||
message: {
|
||||
id: 'msg-1',
|
||||
model: 'claude-test',
|
||||
usage: { cache_read_input_tokens: 2, input_tokens: 3 },
|
||||
},
|
||||
};
|
||||
|
||||
yield {
|
||||
type: 'content_block_start',
|
||||
index: 0,
|
||||
content_block: { type: 'text' },
|
||||
};
|
||||
yield {
|
||||
type: 'content_block_delta',
|
||||
index: 0,
|
||||
delta: { type: 'text_delta', text: 'Hello' },
|
||||
};
|
||||
yield { type: 'content_block_stop', index: 0 };
|
||||
|
||||
yield {
|
||||
type: 'content_block_start',
|
||||
index: 1,
|
||||
content_block: { type: 'thinking', signature: '' },
|
||||
};
|
||||
yield {
|
||||
type: 'content_block_delta',
|
||||
index: 1,
|
||||
delta: { type: 'thinking_delta', thinking: 'Think' },
|
||||
};
|
||||
yield {
|
||||
type: 'content_block_delta',
|
||||
index: 1,
|
||||
delta: { type: 'signature_delta', signature: 'abc' },
|
||||
};
|
||||
yield { type: 'content_block_stop', index: 1 };
|
||||
|
||||
yield {
|
||||
type: 'content_block_start',
|
||||
index: 2,
|
||||
content_block: {
|
||||
type: 'tool_use',
|
||||
id: 't1',
|
||||
name: 'tool',
|
||||
input: {},
|
||||
},
|
||||
};
|
||||
yield {
|
||||
type: 'content_block_delta',
|
||||
index: 2,
|
||||
delta: { type: 'input_json_delta', partial_json: '{"x":' },
|
||||
};
|
||||
yield {
|
||||
type: 'content_block_delta',
|
||||
index: 2,
|
||||
delta: { type: 'input_json_delta', partial_json: '1}' },
|
||||
};
|
||||
yield { type: 'content_block_stop', index: 2 };
|
||||
|
||||
yield {
|
||||
type: 'message_delta',
|
||||
delta: { stop_reason: 'end_turn' },
|
||||
usage: {
|
||||
output_tokens: 5,
|
||||
input_tokens: 7,
|
||||
cache_read_input_tokens: 2,
|
||||
},
|
||||
};
|
||||
yield { type: 'message_stop' };
|
||||
})(),
|
||||
);
|
||||
|
||||
const generator = new AnthropicContentGenerator(
|
||||
{
|
||||
model: 'claude-test',
|
||||
apiKey: 'test-key',
|
||||
timeout: 10_000,
|
||||
maxRetries: 2,
|
||||
samplingParams: { max_tokens: 123 },
|
||||
schemaCompliance: 'auto',
|
||||
},
|
||||
mockConfig,
|
||||
);
|
||||
|
||||
const stream = await generator.generateContentStream({
|
||||
model: 'models/ignored',
|
||||
contents: 'Hello',
|
||||
} as unknown as GenerateContentParameters);
|
||||
|
||||
const chunks: GenerateContentResponse[] = [];
|
||||
for await (const chunk of stream) {
|
||||
chunks.push(chunk);
|
||||
}
|
||||
|
||||
const [anthropicRequest] =
|
||||
anthropicState.lastCreateArgs as AnthropicCreateArgs;
|
||||
expect(anthropicRequest).toEqual(
|
||||
expect.objectContaining({ stream: true }),
|
||||
);
|
||||
|
||||
// Text chunk.
|
||||
expect(chunks[0]?.candidates?.[0]?.content?.parts?.[0]).toEqual({
|
||||
text: 'Hello',
|
||||
});
|
||||
|
||||
// Thinking chunk.
|
||||
expect(chunks[1]?.candidates?.[0]?.content?.parts?.[0]).toEqual({
|
||||
text: 'Think',
|
||||
thought: true,
|
||||
});
|
||||
|
||||
// Signature chunk.
|
||||
expect(chunks[2]?.candidates?.[0]?.content?.parts?.[0]).toEqual({
|
||||
thought: true,
|
||||
thoughtSignature: 'abc',
|
||||
});
|
||||
|
||||
// Tool call chunk.
|
||||
expect(chunks[3]?.candidates?.[0]?.content?.parts?.[0]).toEqual({
|
||||
functionCall: { id: 't1', name: 'tool', args: { x: 1 } },
|
||||
});
|
||||
|
||||
// Usage/finish chunks exist; check the last one.
|
||||
const last = chunks[chunks.length - 1]!;
|
||||
expect(last.candidates?.[0]?.finishReason).toBe(FinishReason.STOP);
|
||||
expect(last.usageMetadata).toEqual({
|
||||
cachedContentTokenCount: 2,
|
||||
promptTokenCount: 9, // cached(2) + input(7)
|
||||
candidatesTokenCount: 5,
|
||||
totalTokenCount: 14,
|
||||
});
|
||||
});
|
||||
});
|
||||
});
|
||||
@@ -0,0 +1,502 @@
|
||||
/**
|
||||
* @license
|
||||
* Copyright 2025 Qwen
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
import Anthropic from '@anthropic-ai/sdk';
|
||||
import type {
|
||||
CountTokensParameters,
|
||||
CountTokensResponse,
|
||||
EmbedContentParameters,
|
||||
EmbedContentResponse,
|
||||
GenerateContentParameters,
|
||||
GenerateContentResponseUsageMetadata,
|
||||
Part,
|
||||
} from '@google/genai';
|
||||
import { GenerateContentResponse } from '@google/genai';
|
||||
import type { Config } from '../../config/config.js';
|
||||
import type {
|
||||
ContentGenerator,
|
||||
ContentGeneratorConfig,
|
||||
} from '../contentGenerator.js';
|
||||
type Message = Anthropic.Message;
|
||||
type MessageCreateParamsNonStreaming =
|
||||
Anthropic.MessageCreateParamsNonStreaming;
|
||||
type MessageCreateParamsStreaming = Anthropic.MessageCreateParamsStreaming;
|
||||
type RawMessageStreamEvent = Anthropic.RawMessageStreamEvent;
|
||||
import { getDefaultTokenizer } from '../../utils/request-tokenizer/index.js';
|
||||
import { safeJsonParse } from '../../utils/safeJsonParse.js';
|
||||
import { AnthropicContentConverter } from './converter.js';
|
||||
|
||||
type StreamingBlockState = {
|
||||
type: string;
|
||||
id?: string;
|
||||
name?: string;
|
||||
inputJson: string;
|
||||
signature: string;
|
||||
};
|
||||
|
||||
type MessageCreateParamsWithThinking = MessageCreateParamsNonStreaming & {
|
||||
thinking?: { type: 'enabled'; budget_tokens: number };
|
||||
// Anthropic beta feature: output_config.effort (requires beta header effort-2025-11-24)
|
||||
// This is not yet represented in the official SDK types we depend on.
|
||||
output_config?: { effort: 'low' | 'medium' | 'high' };
|
||||
};
|
||||
|
||||
export class AnthropicContentGenerator implements ContentGenerator {
|
||||
private client: Anthropic;
|
||||
private converter: AnthropicContentConverter;
|
||||
|
||||
constructor(
|
||||
private contentGeneratorConfig: ContentGeneratorConfig,
|
||||
private readonly cliConfig: Config,
|
||||
) {
|
||||
const defaultHeaders = this.buildHeaders();
|
||||
const baseURL = contentGeneratorConfig.baseUrl;
|
||||
|
||||
this.client = new Anthropic({
|
||||
apiKey: contentGeneratorConfig.apiKey,
|
||||
baseURL,
|
||||
timeout: contentGeneratorConfig.timeout,
|
||||
maxRetries: contentGeneratorConfig.maxRetries,
|
||||
defaultHeaders,
|
||||
});
|
||||
|
||||
this.converter = new AnthropicContentConverter(
|
||||
contentGeneratorConfig.model,
|
||||
contentGeneratorConfig.schemaCompliance,
|
||||
);
|
||||
}
|
||||
|
||||
async generateContent(
|
||||
request: GenerateContentParameters,
|
||||
): Promise<GenerateContentResponse> {
|
||||
const anthropicRequest = await this.buildRequest(request);
|
||||
const response = (await this.client.messages.create(anthropicRequest, {
|
||||
signal: request.config?.abortSignal,
|
||||
})) as Message;
|
||||
|
||||
return this.converter.convertAnthropicResponseToGemini(response);
|
||||
}
|
||||
|
||||
async generateContentStream(
|
||||
request: GenerateContentParameters,
|
||||
): Promise<AsyncGenerator<GenerateContentResponse>> {
|
||||
const anthropicRequest = await this.buildRequest(request);
|
||||
const streamingRequest: MessageCreateParamsStreaming & {
|
||||
thinking?: { type: 'enabled'; budget_tokens: number };
|
||||
} = {
|
||||
...anthropicRequest,
|
||||
stream: true,
|
||||
};
|
||||
|
||||
const stream = (await this.client.messages.create(
|
||||
streamingRequest as MessageCreateParamsStreaming,
|
||||
{
|
||||
signal: request.config?.abortSignal,
|
||||
},
|
||||
)) as AsyncIterable<RawMessageStreamEvent>;
|
||||
|
||||
return this.processStream(stream);
|
||||
}
|
||||
|
||||
async countTokens(
|
||||
request: CountTokensParameters,
|
||||
): Promise<CountTokensResponse> {
|
||||
try {
|
||||
const tokenizer = getDefaultTokenizer();
|
||||
const result = await tokenizer.calculateTokens(request, {
|
||||
textEncoding: 'cl100k_base',
|
||||
});
|
||||
|
||||
return {
|
||||
totalTokens: result.totalTokens,
|
||||
};
|
||||
} catch (error) {
|
||||
console.warn(
|
||||
'Failed to calculate tokens with tokenizer, ' +
|
||||
'falling back to simple method:',
|
||||
error,
|
||||
);
|
||||
|
||||
const content = JSON.stringify(request.contents);
|
||||
const totalTokens = Math.ceil(content.length / 4);
|
||||
return {
|
||||
totalTokens,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
async embedContent(
|
||||
_request: EmbedContentParameters,
|
||||
): Promise<EmbedContentResponse> {
|
||||
throw new Error('Anthropic does not support embeddings.');
|
||||
}
|
||||
|
||||
useSummarizedThinking(): boolean {
|
||||
return false;
|
||||
}
|
||||
|
||||
private buildHeaders(): Record<string, string> {
|
||||
const version = this.cliConfig.getCliVersion() || 'unknown';
|
||||
const userAgent = `QwenCode/${version} (${process.platform}; ${process.arch})`;
|
||||
|
||||
const betas: string[] = [];
|
||||
const reasoning = this.contentGeneratorConfig.reasoning;
|
||||
|
||||
// Interleaved thinking is used when we send the `thinking` field.
|
||||
if (reasoning !== false) {
|
||||
betas.push('interleaved-thinking-2025-05-14');
|
||||
}
|
||||
|
||||
// Effort (beta) is enabled when reasoning.effort is set.
|
||||
if (reasoning !== false && reasoning?.effort !== undefined) {
|
||||
betas.push('effort-2025-11-24');
|
||||
}
|
||||
|
||||
const headers: Record<string, string> = {
|
||||
'User-Agent': userAgent,
|
||||
};
|
||||
|
||||
if (betas.length) {
|
||||
headers['anthropic-beta'] = betas.join(',');
|
||||
}
|
||||
|
||||
return headers;
|
||||
}
|
||||
|
||||
private async buildRequest(
|
||||
request: GenerateContentParameters,
|
||||
): Promise<MessageCreateParamsWithThinking> {
|
||||
const { system, messages } =
|
||||
this.converter.convertGeminiRequestToAnthropic(request);
|
||||
|
||||
const tools = request.config?.tools
|
||||
? await this.converter.convertGeminiToolsToAnthropic(request.config.tools)
|
||||
: undefined;
|
||||
|
||||
const sampling = this.buildSamplingParameters(request);
|
||||
const thinking = this.buildThinkingConfig(request);
|
||||
const outputConfig = this.buildOutputConfig();
|
||||
|
||||
return {
|
||||
model: this.contentGeneratorConfig.model,
|
||||
system,
|
||||
messages,
|
||||
tools,
|
||||
...sampling,
|
||||
...(thinking ? { thinking } : {}),
|
||||
...(outputConfig ? { output_config: outputConfig } : {}),
|
||||
};
|
||||
}
|
||||
|
||||
private buildSamplingParameters(request: GenerateContentParameters): {
|
||||
max_tokens: number;
|
||||
temperature?: number;
|
||||
top_p?: number;
|
||||
top_k?: number;
|
||||
} {
|
||||
const configSamplingParams = this.contentGeneratorConfig.samplingParams;
|
||||
const requestConfig = request.config || {};
|
||||
|
||||
const getParam = <T>(
|
||||
configKey: keyof NonNullable<typeof configSamplingParams>,
|
||||
requestKey?: keyof NonNullable<typeof requestConfig>,
|
||||
): T | undefined => {
|
||||
const configValue = configSamplingParams?.[configKey] as T | undefined;
|
||||
const requestValue = requestKey
|
||||
? (requestConfig[requestKey] as T | undefined)
|
||||
: undefined;
|
||||
return configValue !== undefined ? configValue : requestValue;
|
||||
};
|
||||
|
||||
const maxTokens =
|
||||
getParam<number>('max_tokens', 'maxOutputTokens') ?? 10_000;
|
||||
|
||||
return {
|
||||
max_tokens: maxTokens,
|
||||
temperature: getParam<number>('temperature', 'temperature') ?? 1,
|
||||
top_p: getParam<number>('top_p', 'topP'),
|
||||
top_k: getParam<number>('top_k', 'topK'),
|
||||
};
|
||||
}
|
||||
|
||||
private buildThinkingConfig(
|
||||
request: GenerateContentParameters,
|
||||
): { type: 'enabled'; budget_tokens: number } | undefined {
|
||||
if (request.config?.thinkingConfig?.includeThoughts === false) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
const reasoning = this.contentGeneratorConfig.reasoning;
|
||||
|
||||
if (reasoning === false) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
if (reasoning?.budget_tokens !== undefined) {
|
||||
return {
|
||||
type: 'enabled',
|
||||
budget_tokens: reasoning.budget_tokens,
|
||||
};
|
||||
}
|
||||
|
||||
const effort = reasoning?.effort;
|
||||
// When using interleaved thinking with tools, this budget token limit is the entire context window(200k tokens).
|
||||
const budgetTokens =
|
||||
effort === 'low' ? 16_000 : effort === 'high' ? 64_000 : 32_000;
|
||||
|
||||
return {
|
||||
type: 'enabled',
|
||||
budget_tokens: budgetTokens,
|
||||
};
|
||||
}
|
||||
|
||||
private buildOutputConfig():
|
||||
| { effort: 'low' | 'medium' | 'high' }
|
||||
| undefined {
|
||||
const reasoning = this.contentGeneratorConfig.reasoning;
|
||||
if (reasoning === false || reasoning === undefined) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
if (reasoning.effort === undefined) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
return { effort: reasoning.effort };
|
||||
}
|
||||
|
||||
private async *processStream(
|
||||
stream: AsyncIterable<RawMessageStreamEvent>,
|
||||
): AsyncGenerator<GenerateContentResponse> {
|
||||
let messageId: string | undefined;
|
||||
let model = this.contentGeneratorConfig.model;
|
||||
let cachedTokens = 0;
|
||||
let promptTokens = 0;
|
||||
let completionTokens = 0;
|
||||
let finishReason: string | undefined;
|
||||
|
||||
const blocks = new Map<number, StreamingBlockState>();
|
||||
const collectedResponses: GenerateContentResponse[] = [];
|
||||
|
||||
for await (const event of stream) {
|
||||
switch (event.type) {
|
||||
case 'message_start': {
|
||||
messageId = event.message.id ?? messageId;
|
||||
model = event.message.model ?? model;
|
||||
cachedTokens =
|
||||
event.message.usage?.cache_read_input_tokens ?? cachedTokens;
|
||||
promptTokens = event.message.usage?.input_tokens ?? promptTokens;
|
||||
break;
|
||||
}
|
||||
case 'content_block_start': {
|
||||
const index = event.index ?? 0;
|
||||
const type = String(event.content_block.type || 'text');
|
||||
const initialInput =
|
||||
type === 'tool_use' && 'input' in event.content_block
|
||||
? JSON.stringify(event.content_block.input)
|
||||
: '';
|
||||
blocks.set(index, {
|
||||
type,
|
||||
id:
|
||||
'id' in event.content_block ? event.content_block.id : undefined,
|
||||
name:
|
||||
'name' in event.content_block
|
||||
? event.content_block.name
|
||||
: undefined,
|
||||
inputJson: initialInput !== '{}' ? initialInput : '',
|
||||
signature:
|
||||
type === 'thinking' &&
|
||||
'signature' in event.content_block &&
|
||||
typeof event.content_block.signature === 'string'
|
||||
? event.content_block.signature
|
||||
: '',
|
||||
});
|
||||
break;
|
||||
}
|
||||
case 'content_block_delta': {
|
||||
const index = event.index ?? 0;
|
||||
const deltaType = (event.delta as { type?: string }).type || '';
|
||||
const blockState = blocks.get(index);
|
||||
|
||||
if (deltaType === 'text_delta') {
|
||||
const text = 'text' in event.delta ? event.delta.text : '';
|
||||
if (text) {
|
||||
const chunk = this.buildGeminiChunk({ text }, messageId, model);
|
||||
collectedResponses.push(chunk);
|
||||
yield chunk;
|
||||
}
|
||||
} else if (deltaType === 'thinking_delta') {
|
||||
const thinking =
|
||||
(event.delta as { thinking?: string }).thinking || '';
|
||||
if (thinking) {
|
||||
const chunk = this.buildGeminiChunk(
|
||||
{ text: thinking, thought: true },
|
||||
messageId,
|
||||
model,
|
||||
);
|
||||
collectedResponses.push(chunk);
|
||||
yield chunk;
|
||||
}
|
||||
} else if (deltaType === 'signature_delta' && blockState) {
|
||||
const signature =
|
||||
(event.delta as { signature?: string }).signature || '';
|
||||
if (signature) {
|
||||
blockState.signature += signature;
|
||||
const chunk = this.buildGeminiChunk(
|
||||
{ thought: true, thoughtSignature: signature },
|
||||
messageId,
|
||||
model,
|
||||
);
|
||||
collectedResponses.push(chunk);
|
||||
yield chunk;
|
||||
}
|
||||
} else if (deltaType === 'input_json_delta' && blockState) {
|
||||
const jsonDelta =
|
||||
(event.delta as { partial_json?: string }).partial_json || '';
|
||||
if (jsonDelta) {
|
||||
blockState.inputJson += jsonDelta;
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'content_block_stop': {
|
||||
const index = event.index ?? 0;
|
||||
const blockState = blocks.get(index);
|
||||
if (blockState?.type === 'tool_use') {
|
||||
const args = safeJsonParse(blockState.inputJson || '{}', {});
|
||||
const chunk = this.buildGeminiChunk(
|
||||
{
|
||||
functionCall: {
|
||||
id: blockState.id,
|
||||
name: blockState.name,
|
||||
args,
|
||||
},
|
||||
},
|
||||
messageId,
|
||||
model,
|
||||
);
|
||||
collectedResponses.push(chunk);
|
||||
yield chunk;
|
||||
}
|
||||
blocks.delete(index);
|
||||
break;
|
||||
}
|
||||
case 'message_delta': {
|
||||
const stopReasonValue = event.delta.stop_reason;
|
||||
if (stopReasonValue) {
|
||||
finishReason = stopReasonValue;
|
||||
}
|
||||
|
||||
// Some Anthropic-compatible providers may include additional usage fields
|
||||
// (e.g. `input_tokens`, `cache_read_input_tokens`) even though the official
|
||||
// Anthropic SDK types only expose `output_tokens` here.
|
||||
const usageUnknown = event.usage as unknown;
|
||||
const usageRecord =
|
||||
usageUnknown && typeof usageUnknown === 'object'
|
||||
? (usageUnknown as Record<string, unknown>)
|
||||
: undefined;
|
||||
|
||||
if (event.usage?.output_tokens !== undefined) {
|
||||
completionTokens = event.usage.output_tokens;
|
||||
}
|
||||
if (usageRecord?.['input_tokens'] !== undefined) {
|
||||
const inputTokens = usageRecord['input_tokens'];
|
||||
if (typeof inputTokens === 'number') {
|
||||
promptTokens = inputTokens;
|
||||
}
|
||||
}
|
||||
if (usageRecord?.['cache_read_input_tokens'] !== undefined) {
|
||||
const cacheRead = usageRecord['cache_read_input_tokens'];
|
||||
if (typeof cacheRead === 'number') {
|
||||
cachedTokens = cacheRead;
|
||||
}
|
||||
}
|
||||
|
||||
if (finishReason || event.usage) {
|
||||
const chunk = this.buildGeminiChunk(
|
||||
undefined,
|
||||
messageId,
|
||||
model,
|
||||
finishReason,
|
||||
{
|
||||
cachedContentTokenCount: cachedTokens,
|
||||
promptTokenCount: cachedTokens + promptTokens,
|
||||
candidatesTokenCount: completionTokens,
|
||||
totalTokenCount: cachedTokens + promptTokens + completionTokens,
|
||||
},
|
||||
);
|
||||
collectedResponses.push(chunk);
|
||||
yield chunk;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case 'message_stop': {
|
||||
if (promptTokens || completionTokens) {
|
||||
const chunk = this.buildGeminiChunk(
|
||||
undefined,
|
||||
messageId,
|
||||
model,
|
||||
finishReason,
|
||||
{
|
||||
cachedContentTokenCount: cachedTokens,
|
||||
promptTokenCount: cachedTokens + promptTokens,
|
||||
candidatesTokenCount: completionTokens,
|
||||
totalTokenCount: cachedTokens + promptTokens + completionTokens,
|
||||
},
|
||||
);
|
||||
collectedResponses.push(chunk);
|
||||
yield chunk;
|
||||
}
|
||||
break;
|
||||
}
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
private buildGeminiChunk(
|
||||
part?: {
|
||||
text?: string;
|
||||
thought?: boolean;
|
||||
thoughtSignature?: string;
|
||||
functionCall?: unknown;
|
||||
},
|
||||
responseId?: string,
|
||||
model?: string,
|
||||
finishReason?: string,
|
||||
usageMetadata?: GenerateContentResponseUsageMetadata,
|
||||
): GenerateContentResponse {
|
||||
const response = new GenerateContentResponse();
|
||||
response.responseId = responseId;
|
||||
response.createTime = Date.now().toString();
|
||||
response.modelVersion = model || this.contentGeneratorConfig.model;
|
||||
response.promptFeedback = { safetyRatings: [] };
|
||||
|
||||
const candidateParts = part ? [part as unknown as Part] : [];
|
||||
const mappedFinishReason =
|
||||
finishReason !== undefined
|
||||
? this.converter.mapAnthropicFinishReasonToGemini(finishReason)
|
||||
: undefined;
|
||||
response.candidates = [
|
||||
{
|
||||
content: {
|
||||
parts: candidateParts,
|
||||
role: 'model' as const,
|
||||
},
|
||||
index: 0,
|
||||
safetyRatings: [],
|
||||
...(mappedFinishReason ? { finishReason: mappedFinishReason } : {}),
|
||||
},
|
||||
];
|
||||
|
||||
if (usageMetadata) {
|
||||
response.usageMetadata = usageMetadata;
|
||||
}
|
||||
|
||||
return response;
|
||||
}
|
||||
}
|
||||
@@ -0,0 +1,377 @@
|
||||
/**
|
||||
* @license
|
||||
* Copyright 2025 Qwen
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
import { beforeEach, describe, expect, it, vi } from 'vitest';
|
||||
import type { CallableTool, Content, Tool } from '@google/genai';
|
||||
import { FinishReason } from '@google/genai';
|
||||
import type Anthropic from '@anthropic-ai/sdk';
|
||||
|
||||
// Mock schema conversion so we can force edge-cases (e.g. missing `type`).
|
||||
vi.mock('../../utils/schemaConverter.js', () => ({
|
||||
convertSchema: vi.fn((schema: unknown) => schema),
|
||||
}));
|
||||
|
||||
import { convertSchema } from '../../utils/schemaConverter.js';
|
||||
import { AnthropicContentConverter } from './converter.js';
|
||||
|
||||
describe('AnthropicContentConverter', () => {
|
||||
let converter: AnthropicContentConverter;
|
||||
|
||||
beforeEach(() => {
|
||||
vi.clearAllMocks();
|
||||
converter = new AnthropicContentConverter('test-model', 'auto');
|
||||
});
|
||||
|
||||
describe('convertGeminiRequestToAnthropic', () => {
|
||||
it('extracts systemInstruction text from string', () => {
|
||||
const { system } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: 'hi',
|
||||
config: { systemInstruction: 'sys' },
|
||||
});
|
||||
|
||||
expect(system).toBe('sys');
|
||||
});
|
||||
|
||||
it('extracts systemInstruction text from parts and joins with newlines', () => {
|
||||
const { system } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: 'hi',
|
||||
config: {
|
||||
systemInstruction: {
|
||||
role: 'system',
|
||||
parts: [{ text: 'a' }, { text: 'b' }],
|
||||
} as unknown as Content,
|
||||
},
|
||||
});
|
||||
|
||||
expect(system).toBe('a\nb');
|
||||
});
|
||||
|
||||
it('converts a plain string content into a user message', () => {
|
||||
const { messages } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: 'Hello',
|
||||
});
|
||||
|
||||
expect(messages).toEqual([
|
||||
{ role: 'user', content: [{ type: 'text', text: 'Hello' }] },
|
||||
]);
|
||||
});
|
||||
|
||||
it('converts user content parts into a user message with text blocks', () => {
|
||||
const { messages } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'user',
|
||||
parts: [{ text: 'Hello' }, { text: 'World' }],
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
expect(messages).toEqual([
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
{ type: 'text', text: 'Hello' },
|
||||
{ type: 'text', text: 'World' },
|
||||
],
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('converts assistant thought parts into Anthropic thinking blocks', () => {
|
||||
const { messages } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'model',
|
||||
parts: [
|
||||
{ text: 'internal', thought: true, thoughtSignature: 'sig' },
|
||||
{ text: 'visible' },
|
||||
],
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
expect(messages).toEqual([
|
||||
{
|
||||
role: 'assistant',
|
||||
content: [
|
||||
{ type: 'thinking', thinking: 'internal', signature: 'sig' },
|
||||
{ type: 'text', text: 'visible' },
|
||||
],
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('converts functionCall parts from model role into tool_use blocks', () => {
|
||||
const { messages } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'model',
|
||||
parts: [
|
||||
{ text: 'preface' },
|
||||
{
|
||||
functionCall: {
|
||||
id: 'call-1',
|
||||
name: 'tool_name',
|
||||
args: { a: 1 },
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
expect(messages).toEqual([
|
||||
{
|
||||
role: 'assistant',
|
||||
content: [
|
||||
{ type: 'text', text: 'preface' },
|
||||
{
|
||||
type: 'tool_use',
|
||||
id: 'call-1',
|
||||
name: 'tool_name',
|
||||
input: { a: 1 },
|
||||
},
|
||||
],
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('converts functionResponse parts into user tool_result messages', () => {
|
||||
const { messages } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call-1',
|
||||
name: 'tool_name',
|
||||
response: { output: 'ok' },
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
expect(messages).toEqual([
|
||||
{
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'tool_result',
|
||||
tool_use_id: 'call-1',
|
||||
content: 'ok',
|
||||
},
|
||||
],
|
||||
},
|
||||
]);
|
||||
});
|
||||
|
||||
it('extracts function response error field when present', () => {
|
||||
const { messages } = converter.convertGeminiRequestToAnthropic({
|
||||
model: 'models/test',
|
||||
contents: [
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{
|
||||
functionResponse: {
|
||||
id: 'call-1',
|
||||
name: 'tool_name',
|
||||
response: { error: 'boom' },
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
});
|
||||
|
||||
expect(messages[0]).toEqual({
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'tool_result',
|
||||
tool_use_id: 'call-1',
|
||||
content: 'boom',
|
||||
},
|
||||
],
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
describe('convertGeminiToolsToAnthropic', () => {
|
||||
it('converts Tool.functionDeclarations to Anthropic tools and runs schema conversion', async () => {
|
||||
const tools = [
|
||||
{
|
||||
functionDeclarations: [
|
||||
{
|
||||
name: 'get_weather',
|
||||
description: 'Get weather',
|
||||
parametersJsonSchema: {
|
||||
type: 'object',
|
||||
properties: { location: { type: 'string' } },
|
||||
required: ['location'],
|
||||
},
|
||||
},
|
||||
],
|
||||
},
|
||||
] as Tool[];
|
||||
|
||||
const result = await converter.convertGeminiToolsToAnthropic(tools);
|
||||
|
||||
expect(result).toHaveLength(1);
|
||||
expect(result[0]).toEqual({
|
||||
name: 'get_weather',
|
||||
description: 'Get weather',
|
||||
input_schema: {
|
||||
type: 'object',
|
||||
properties: { location: { type: 'string' } },
|
||||
required: ['location'],
|
||||
},
|
||||
});
|
||||
|
||||
expect(vi.mocked(convertSchema)).toHaveBeenCalledTimes(1);
|
||||
});
|
||||
|
||||
it('resolves CallableTool.tool() and converts its functionDeclarations', async () => {
|
||||
const callable = [
|
||||
{
|
||||
tool: async () =>
|
||||
({
|
||||
functionDeclarations: [
|
||||
{
|
||||
name: 'dynamic_tool',
|
||||
description: 'resolved tool',
|
||||
parametersJsonSchema: { type: 'object', properties: {} },
|
||||
},
|
||||
],
|
||||
}) as unknown as Tool,
|
||||
},
|
||||
] as CallableTool[];
|
||||
|
||||
const result = await converter.convertGeminiToolsToAnthropic(callable);
|
||||
|
||||
expect(result).toHaveLength(1);
|
||||
expect(result[0].name).toBe('dynamic_tool');
|
||||
});
|
||||
|
||||
it('defaults missing parameters to an empty object schema', async () => {
|
||||
const tools = [
|
||||
{
|
||||
functionDeclarations: [
|
||||
{ name: 'no_params', description: 'no params' },
|
||||
],
|
||||
},
|
||||
] as Tool[];
|
||||
|
||||
const result = await converter.convertGeminiToolsToAnthropic(tools);
|
||||
|
||||
expect(result).toHaveLength(1);
|
||||
expect(result[0]).toEqual({
|
||||
name: 'no_params',
|
||||
description: 'no params',
|
||||
input_schema: { type: 'object', properties: {} },
|
||||
});
|
||||
});
|
||||
|
||||
it('forces input_schema.type to "object" when schema conversion yields no type', async () => {
|
||||
vi.mocked(convertSchema).mockImplementationOnce(() => ({
|
||||
properties: {},
|
||||
}));
|
||||
const tools = [
|
||||
{
|
||||
functionDeclarations: [
|
||||
{
|
||||
name: 'edge',
|
||||
description: 'edge',
|
||||
parametersJsonSchema: { type: 'object', properties: {} },
|
||||
},
|
||||
],
|
||||
},
|
||||
] as Tool[];
|
||||
|
||||
const result = await converter.convertGeminiToolsToAnthropic(tools);
|
||||
expect(result[0]?.input_schema?.type).toBe('object');
|
||||
});
|
||||
});
|
||||
|
||||
describe('convertAnthropicResponseToGemini', () => {
|
||||
it('converts text, tool_use, thinking, and redacted_thinking blocks', () => {
|
||||
const response = converter.convertAnthropicResponseToGemini({
|
||||
id: 'msg-1',
|
||||
model: 'claude-test',
|
||||
stop_reason: 'end_turn',
|
||||
content: [
|
||||
{ type: 'thinking', thinking: 'thought', signature: 'sig' },
|
||||
{ type: 'text', text: 'hello' },
|
||||
{ type: 'tool_use', id: 't1', name: 'tool', input: { x: 1 } },
|
||||
{ type: 'redacted_thinking' },
|
||||
],
|
||||
usage: { input_tokens: 3, output_tokens: 5 },
|
||||
} as unknown as Anthropic.Message);
|
||||
|
||||
expect(response.responseId).toBe('msg-1');
|
||||
expect(response.modelVersion).toBe('claude-test');
|
||||
expect(response.candidates?.[0]?.finishReason).toBe(FinishReason.STOP);
|
||||
expect(response.usageMetadata).toEqual({
|
||||
promptTokenCount: 3,
|
||||
candidatesTokenCount: 5,
|
||||
totalTokenCount: 8,
|
||||
});
|
||||
|
||||
const parts = response.candidates?.[0]?.content?.parts || [];
|
||||
expect(parts).toEqual([
|
||||
{ text: 'thought', thought: true, thoughtSignature: 'sig' },
|
||||
{ text: 'hello' },
|
||||
{ functionCall: { id: 't1', name: 'tool', args: { x: 1 } } },
|
||||
{ text: '', thought: true },
|
||||
]);
|
||||
});
|
||||
|
||||
it('handles tool_use input that is a JSON string', () => {
|
||||
const response = converter.convertAnthropicResponseToGemini({
|
||||
id: 'msg-1',
|
||||
model: 'claude-test',
|
||||
stop_reason: null,
|
||||
content: [
|
||||
{ type: 'tool_use', id: 't1', name: 'tool', input: '{"x":1}' },
|
||||
],
|
||||
} as unknown as Anthropic.Message);
|
||||
|
||||
const parts = response.candidates?.[0]?.content?.parts || [];
|
||||
expect(parts).toEqual([
|
||||
{ functionCall: { id: 't1', name: 'tool', args: { x: 1 } } },
|
||||
]);
|
||||
});
|
||||
});
|
||||
|
||||
describe('mapAnthropicFinishReasonToGemini', () => {
|
||||
it('maps known reasons', () => {
|
||||
expect(converter.mapAnthropicFinishReasonToGemini('end_turn')).toBe(
|
||||
FinishReason.STOP,
|
||||
);
|
||||
expect(converter.mapAnthropicFinishReasonToGemini('max_tokens')).toBe(
|
||||
FinishReason.MAX_TOKENS,
|
||||
);
|
||||
expect(converter.mapAnthropicFinishReasonToGemini('content_filter')).toBe(
|
||||
FinishReason.SAFETY,
|
||||
);
|
||||
});
|
||||
|
||||
it('returns undefined for null/empty', () => {
|
||||
expect(converter.mapAnthropicFinishReasonToGemini(null)).toBeUndefined();
|
||||
expect(converter.mapAnthropicFinishReasonToGemini('')).toBeUndefined();
|
||||
});
|
||||
});
|
||||
});
|
||||
448
packages/core/src/core/anthropicContentGenerator/converter.ts
Normal file
448
packages/core/src/core/anthropicContentGenerator/converter.ts
Normal file
@@ -0,0 +1,448 @@
|
||||
/**
|
||||
* @license
|
||||
* Copyright 2025 Qwen
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
import type {
|
||||
Candidate,
|
||||
CallableTool,
|
||||
Content,
|
||||
ContentListUnion,
|
||||
ContentUnion,
|
||||
FunctionCall,
|
||||
FunctionResponse,
|
||||
GenerateContentParameters,
|
||||
Part,
|
||||
PartUnion,
|
||||
Tool,
|
||||
ToolListUnion,
|
||||
} from '@google/genai';
|
||||
import { FinishReason, GenerateContentResponse } from '@google/genai';
|
||||
import type Anthropic from '@anthropic-ai/sdk';
|
||||
import { safeJsonParse } from '../../utils/safeJsonParse.js';
|
||||
import {
|
||||
convertSchema,
|
||||
type SchemaComplianceMode,
|
||||
} from '../../utils/schemaConverter.js';
|
||||
|
||||
type AnthropicMessageParam = Anthropic.MessageParam;
|
||||
type AnthropicToolParam = Anthropic.Tool;
|
||||
type AnthropicContentBlockParam = Anthropic.ContentBlockParam;
|
||||
|
||||
type ThoughtPart = { text: string; signature?: string };
|
||||
|
||||
interface ParsedParts {
|
||||
thoughtParts: ThoughtPart[];
|
||||
contentParts: string[];
|
||||
functionCalls: FunctionCall[];
|
||||
functionResponses: FunctionResponse[];
|
||||
}
|
||||
|
||||
export class AnthropicContentConverter {
|
||||
private model: string;
|
||||
private schemaCompliance: SchemaComplianceMode;
|
||||
|
||||
constructor(model: string, schemaCompliance: SchemaComplianceMode = 'auto') {
|
||||
this.model = model;
|
||||
this.schemaCompliance = schemaCompliance;
|
||||
}
|
||||
|
||||
convertGeminiRequestToAnthropic(request: GenerateContentParameters): {
|
||||
system?: string;
|
||||
messages: AnthropicMessageParam[];
|
||||
} {
|
||||
const messages: AnthropicMessageParam[] = [];
|
||||
|
||||
const system = this.extractTextFromContentUnion(
|
||||
request.config?.systemInstruction,
|
||||
);
|
||||
|
||||
this.processContents(request.contents, messages);
|
||||
|
||||
return {
|
||||
system: system || undefined,
|
||||
messages,
|
||||
};
|
||||
}
|
||||
|
||||
async convertGeminiToolsToAnthropic(
|
||||
geminiTools: ToolListUnion,
|
||||
): Promise<AnthropicToolParam[]> {
|
||||
const tools: AnthropicToolParam[] = [];
|
||||
|
||||
for (const tool of geminiTools) {
|
||||
let actualTool: Tool;
|
||||
|
||||
if ('tool' in tool) {
|
||||
actualTool = await (tool as CallableTool).tool();
|
||||
} else {
|
||||
actualTool = tool as Tool;
|
||||
}
|
||||
|
||||
if (!actualTool.functionDeclarations) {
|
||||
continue;
|
||||
}
|
||||
|
||||
for (const func of actualTool.functionDeclarations) {
|
||||
if (!func.name) continue;
|
||||
|
||||
let inputSchema: Record<string, unknown> | undefined;
|
||||
if (func.parametersJsonSchema) {
|
||||
inputSchema = {
|
||||
...(func.parametersJsonSchema as Record<string, unknown>),
|
||||
};
|
||||
} else if (func.parameters) {
|
||||
inputSchema = func.parameters as Record<string, unknown>;
|
||||
}
|
||||
|
||||
if (!inputSchema) {
|
||||
inputSchema = { type: 'object', properties: {} };
|
||||
}
|
||||
|
||||
inputSchema = convertSchema(inputSchema, this.schemaCompliance);
|
||||
if (typeof inputSchema['type'] !== 'string') {
|
||||
inputSchema['type'] = 'object';
|
||||
}
|
||||
|
||||
tools.push({
|
||||
name: func.name,
|
||||
description: func.description,
|
||||
input_schema: inputSchema as Anthropic.Tool.InputSchema,
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return tools;
|
||||
}
|
||||
|
||||
convertAnthropicResponseToGemini(
|
||||
response: Anthropic.Message,
|
||||
): GenerateContentResponse {
|
||||
const geminiResponse = new GenerateContentResponse();
|
||||
const parts: Part[] = [];
|
||||
|
||||
for (const block of response.content || []) {
|
||||
const blockType = String((block as { type?: string })['type'] || '');
|
||||
if (blockType === 'text') {
|
||||
const text =
|
||||
typeof (block as { text?: string }).text === 'string'
|
||||
? (block as { text?: string }).text
|
||||
: '';
|
||||
if (text) {
|
||||
parts.push({ text });
|
||||
}
|
||||
} else if (blockType === 'tool_use') {
|
||||
const toolUse = block as {
|
||||
id?: string;
|
||||
name?: string;
|
||||
input?: unknown;
|
||||
};
|
||||
parts.push({
|
||||
functionCall: {
|
||||
id: typeof toolUse.id === 'string' ? toolUse.id : undefined,
|
||||
name: typeof toolUse.name === 'string' ? toolUse.name : undefined,
|
||||
args: this.safeInputToArgs(toolUse.input),
|
||||
},
|
||||
});
|
||||
} else if (blockType === 'thinking') {
|
||||
const thinking =
|
||||
typeof (block as { thinking?: string }).thinking === 'string'
|
||||
? (block as { thinking?: string }).thinking
|
||||
: '';
|
||||
const signature =
|
||||
typeof (block as { signature?: string }).signature === 'string'
|
||||
? (block as { signature?: string }).signature
|
||||
: '';
|
||||
if (thinking || signature) {
|
||||
const thoughtPart: Part = {
|
||||
text: thinking,
|
||||
thought: true,
|
||||
thoughtSignature: signature,
|
||||
};
|
||||
parts.push(thoughtPart);
|
||||
}
|
||||
} else if (blockType === 'redacted_thinking') {
|
||||
parts.push({ text: '', thought: true });
|
||||
}
|
||||
}
|
||||
|
||||
const candidate: Candidate = {
|
||||
content: {
|
||||
parts,
|
||||
role: 'model' as const,
|
||||
},
|
||||
index: 0,
|
||||
safetyRatings: [],
|
||||
};
|
||||
|
||||
const finishReason = this.mapAnthropicFinishReasonToGemini(
|
||||
response.stop_reason,
|
||||
);
|
||||
if (finishReason) {
|
||||
candidate.finishReason = finishReason;
|
||||
}
|
||||
|
||||
geminiResponse.candidates = [candidate];
|
||||
geminiResponse.responseId = response.id;
|
||||
geminiResponse.createTime = Date.now().toString();
|
||||
geminiResponse.modelVersion = response.model || this.model;
|
||||
geminiResponse.promptFeedback = { safetyRatings: [] };
|
||||
|
||||
if (response.usage) {
|
||||
const promptTokens = response.usage.input_tokens || 0;
|
||||
const completionTokens = response.usage.output_tokens || 0;
|
||||
geminiResponse.usageMetadata = {
|
||||
promptTokenCount: promptTokens,
|
||||
candidatesTokenCount: completionTokens,
|
||||
totalTokenCount: promptTokens + completionTokens,
|
||||
};
|
||||
}
|
||||
|
||||
return geminiResponse;
|
||||
}
|
||||
|
||||
private processContents(
|
||||
contents: ContentListUnion,
|
||||
messages: AnthropicMessageParam[],
|
||||
): void {
|
||||
if (Array.isArray(contents)) {
|
||||
for (const content of contents) {
|
||||
this.processContent(content, messages);
|
||||
}
|
||||
} else if (contents) {
|
||||
this.processContent(contents, messages);
|
||||
}
|
||||
}
|
||||
|
||||
private processContent(
|
||||
content: ContentUnion | PartUnion,
|
||||
messages: AnthropicMessageParam[],
|
||||
): void {
|
||||
if (typeof content === 'string') {
|
||||
messages.push({
|
||||
role: 'user',
|
||||
content: [{ type: 'text', text: content }],
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
if (!this.isContentObject(content)) return;
|
||||
|
||||
const parsed = this.parseParts(content.parts || []);
|
||||
|
||||
if (parsed.functionResponses.length > 0) {
|
||||
for (const response of parsed.functionResponses) {
|
||||
messages.push({
|
||||
role: 'user',
|
||||
content: [
|
||||
{
|
||||
type: 'tool_result',
|
||||
tool_use_id: response.id || '',
|
||||
content: this.extractFunctionResponseContent(response.response),
|
||||
},
|
||||
],
|
||||
});
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if (content.role === 'model' && parsed.functionCalls.length > 0) {
|
||||
const thinkingBlocks: AnthropicContentBlockParam[] =
|
||||
parsed.thoughtParts.map((part) => {
|
||||
const thinkingBlock: unknown = {
|
||||
type: 'thinking',
|
||||
thinking: part.text,
|
||||
};
|
||||
if (part.signature) {
|
||||
(thinkingBlock as { signature?: string }).signature =
|
||||
part.signature;
|
||||
}
|
||||
return thinkingBlock as AnthropicContentBlockParam;
|
||||
});
|
||||
const toolUses: AnthropicContentBlockParam[] = parsed.functionCalls.map(
|
||||
(call, index) => ({
|
||||
type: 'tool_use',
|
||||
id: call.id || `tool_${index}`,
|
||||
name: call.name || '',
|
||||
input: (call.args as Record<string, unknown>) || {},
|
||||
}),
|
||||
);
|
||||
|
||||
const textBlocks: AnthropicContentBlockParam[] = parsed.contentParts.map(
|
||||
(text) => ({
|
||||
type: 'text' as const,
|
||||
text,
|
||||
}),
|
||||
);
|
||||
|
||||
messages.push({
|
||||
role: 'assistant',
|
||||
content: [...thinkingBlocks, ...textBlocks, ...toolUses],
|
||||
});
|
||||
return;
|
||||
}
|
||||
|
||||
const role = content.role === 'model' ? 'assistant' : 'user';
|
||||
const thinkingBlocks: AnthropicContentBlockParam[] =
|
||||
role === 'assistant'
|
||||
? parsed.thoughtParts.map((part) => {
|
||||
const thinkingBlock: unknown = {
|
||||
type: 'thinking',
|
||||
thinking: part.text,
|
||||
};
|
||||
if (part.signature) {
|
||||
(thinkingBlock as { signature?: string }).signature =
|
||||
part.signature;
|
||||
}
|
||||
return thinkingBlock as AnthropicContentBlockParam;
|
||||
})
|
||||
: [];
|
||||
const textBlocks: AnthropicContentBlockParam[] = [
|
||||
...thinkingBlocks,
|
||||
...parsed.contentParts.map((text) => ({
|
||||
type: 'text' as const,
|
||||
text,
|
||||
})),
|
||||
];
|
||||
if (textBlocks.length > 0) {
|
||||
messages.push({ role, content: textBlocks });
|
||||
}
|
||||
}
|
||||
|
||||
private parseParts(parts: Part[]): ParsedParts {
|
||||
const thoughtParts: ThoughtPart[] = [];
|
||||
const contentParts: string[] = [];
|
||||
const functionCalls: FunctionCall[] = [];
|
||||
const functionResponses: FunctionResponse[] = [];
|
||||
|
||||
for (const part of parts) {
|
||||
if (typeof part === 'string') {
|
||||
contentParts.push(part);
|
||||
} else if (
|
||||
'text' in part &&
|
||||
part.text &&
|
||||
!('thought' in part && part.thought)
|
||||
) {
|
||||
contentParts.push(part.text);
|
||||
} else if ('text' in part && 'thought' in part && part.thought) {
|
||||
thoughtParts.push({
|
||||
text: part.text || '',
|
||||
signature:
|
||||
'thoughtSignature' in part &&
|
||||
typeof part.thoughtSignature === 'string'
|
||||
? part.thoughtSignature
|
||||
: undefined,
|
||||
});
|
||||
} else if ('functionCall' in part && part.functionCall) {
|
||||
functionCalls.push(part.functionCall);
|
||||
} else if ('functionResponse' in part && part.functionResponse) {
|
||||
functionResponses.push(part.functionResponse);
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
thoughtParts,
|
||||
contentParts,
|
||||
functionCalls,
|
||||
functionResponses,
|
||||
};
|
||||
}
|
||||
|
||||
private extractTextFromContentUnion(contentUnion: unknown): string {
|
||||
if (typeof contentUnion === 'string') {
|
||||
return contentUnion;
|
||||
}
|
||||
|
||||
if (Array.isArray(contentUnion)) {
|
||||
return contentUnion
|
||||
.map((item) => this.extractTextFromContentUnion(item))
|
||||
.filter(Boolean)
|
||||
.join('\n');
|
||||
}
|
||||
|
||||
if (typeof contentUnion === 'object' && contentUnion !== null) {
|
||||
if ('parts' in contentUnion) {
|
||||
const content = contentUnion as Content;
|
||||
return (
|
||||
content.parts
|
||||
?.map((part: Part) => {
|
||||
if (typeof part === 'string') return part;
|
||||
if ('text' in part) return part.text || '';
|
||||
return '';
|
||||
})
|
||||
.filter(Boolean)
|
||||
.join('\n') || ''
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
return '';
|
||||
}
|
||||
|
||||
private extractFunctionResponseContent(response: unknown): string {
|
||||
if (response === null || response === undefined) {
|
||||
return '';
|
||||
}
|
||||
|
||||
if (typeof response === 'string') {
|
||||
return response;
|
||||
}
|
||||
|
||||
if (typeof response === 'object') {
|
||||
const responseObject = response as Record<string, unknown>;
|
||||
const output = responseObject['output'];
|
||||
if (typeof output === 'string') {
|
||||
return output;
|
||||
}
|
||||
|
||||
const error = responseObject['error'];
|
||||
if (typeof error === 'string') {
|
||||
return error;
|
||||
}
|
||||
}
|
||||
|
||||
try {
|
||||
const serialized = JSON.stringify(response);
|
||||
return serialized ?? String(response);
|
||||
} catch {
|
||||
return String(response);
|
||||
}
|
||||
}
|
||||
|
||||
private safeInputToArgs(input: unknown): Record<string, unknown> {
|
||||
if (input && typeof input === 'object') {
|
||||
return input as Record<string, unknown>;
|
||||
}
|
||||
if (typeof input === 'string') {
|
||||
return safeJsonParse(input, {});
|
||||
}
|
||||
return {};
|
||||
}
|
||||
|
||||
mapAnthropicFinishReasonToGemini(
|
||||
reason?: string | null,
|
||||
): FinishReason | undefined {
|
||||
if (!reason) return undefined;
|
||||
const mapping: Record<string, FinishReason> = {
|
||||
end_turn: FinishReason.STOP,
|
||||
stop_sequence: FinishReason.STOP,
|
||||
tool_use: FinishReason.STOP,
|
||||
max_tokens: FinishReason.MAX_TOKENS,
|
||||
content_filter: FinishReason.SAFETY,
|
||||
};
|
||||
return mapping[reason] || FinishReason.FINISH_REASON_UNSPECIFIED;
|
||||
}
|
||||
|
||||
private isContentObject(
|
||||
content: unknown,
|
||||
): content is { role: string; parts: Part[] } {
|
||||
return (
|
||||
typeof content === 'object' &&
|
||||
content !== null &&
|
||||
'role' in content &&
|
||||
'parts' in content &&
|
||||
Array.isArray((content as Record<string, unknown>)['parts'])
|
||||
);
|
||||
}
|
||||
}
|
||||
21
packages/core/src/core/anthropicContentGenerator/index.ts
Normal file
21
packages/core/src/core/anthropicContentGenerator/index.ts
Normal file
@@ -0,0 +1,21 @@
|
||||
/**
|
||||
* @license
|
||||
* Copyright 2025 Qwen
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
import type {
|
||||
ContentGenerator,
|
||||
ContentGeneratorConfig,
|
||||
} from '../contentGenerator.js';
|
||||
import type { Config } from '../../config/config.js';
|
||||
import { AnthropicContentGenerator } from './anthropicContentGenerator.js';
|
||||
|
||||
export { AnthropicContentGenerator } from './anthropicContentGenerator.js';
|
||||
|
||||
export function createAnthropicContentGenerator(
|
||||
contentGeneratorConfig: ContentGeneratorConfig,
|
||||
cliConfig: Config,
|
||||
): ContentGenerator {
|
||||
return new AnthropicContentGenerator(contentGeneratorConfig, cliConfig);
|
||||
}
|
||||
@@ -8,7 +8,7 @@ import { describe, it, expect, vi } from 'vitest';
|
||||
import { createContentGenerator, AuthType } from './contentGenerator.js';
|
||||
import { GoogleGenAI } from '@google/genai';
|
||||
import type { Config } from '../config/config.js';
|
||||
import { LoggingContentGenerator } from './geminiContentGenerator/loggingContentGenerator.js';
|
||||
import { LoggingContentGenerator } from './loggingContentGenerator/index.js';
|
||||
|
||||
vi.mock('@google/genai');
|
||||
|
||||
|
||||
@@ -14,6 +14,7 @@ import type {
|
||||
} from '@google/genai';
|
||||
import { DEFAULT_QWEN_MODEL } from '../config/models.js';
|
||||
import type { Config } from '../config/config.js';
|
||||
import { LoggingContentGenerator } from './loggingContentGenerator/index.js';
|
||||
|
||||
/**
|
||||
* Interface abstracting the core functionalities for generating content and counting tokens.
|
||||
@@ -37,10 +38,11 @@ export interface ContentGenerator {
|
||||
}
|
||||
|
||||
export enum AuthType {
|
||||
USE_GEMINI = 'gemini-api-key',
|
||||
USE_VERTEX_AI = 'vertex-ai',
|
||||
USE_OPENAI = 'openai',
|
||||
QWEN_OAUTH = 'qwen-oauth',
|
||||
USE_GEMINI = 'gemini',
|
||||
USE_VERTEX_AI = 'vertex-ai',
|
||||
USE_ANTHROPIC = 'anthropic',
|
||||
}
|
||||
|
||||
export type ContentGeneratorConfig = {
|
||||
@@ -63,9 +65,12 @@ export type ContentGeneratorConfig = {
|
||||
temperature?: number;
|
||||
max_tokens?: number;
|
||||
};
|
||||
reasoning?: {
|
||||
effort?: 'low' | 'medium' | 'high';
|
||||
};
|
||||
reasoning?:
|
||||
| false
|
||||
| {
|
||||
effort?: 'low' | 'medium' | 'high';
|
||||
budget_tokens?: number;
|
||||
};
|
||||
proxy?: string | undefined;
|
||||
userAgent?: string;
|
||||
// Schema compliance mode for tool definitions
|
||||
@@ -77,7 +82,7 @@ export function createContentGeneratorConfig(
|
||||
authType: AuthType | undefined,
|
||||
generationConfig?: Partial<ContentGeneratorConfig>,
|
||||
): ContentGeneratorConfig {
|
||||
const newContentGeneratorConfig: Partial<ContentGeneratorConfig> = {
|
||||
let newContentGeneratorConfig: Partial<ContentGeneratorConfig> = {
|
||||
...(generationConfig || {}),
|
||||
authType,
|
||||
proxy: config?.getProxy(),
|
||||
@@ -94,8 +99,16 @@ export function createContentGeneratorConfig(
|
||||
}
|
||||
|
||||
if (authType === AuthType.USE_OPENAI) {
|
||||
newContentGeneratorConfig = {
|
||||
...newContentGeneratorConfig,
|
||||
apiKey: newContentGeneratorConfig.apiKey || process.env['OPENAI_API_KEY'],
|
||||
baseUrl:
|
||||
newContentGeneratorConfig.baseUrl || process.env['OPENAI_BASE_URL'],
|
||||
model: newContentGeneratorConfig.model || process.env['OPENAI_MODEL'],
|
||||
};
|
||||
|
||||
if (!newContentGeneratorConfig.apiKey) {
|
||||
throw new Error('OpenAI API key is required');
|
||||
throw new Error('OPENAI_API_KEY environment variable not found.');
|
||||
}
|
||||
|
||||
return {
|
||||
@@ -104,10 +117,62 @@ export function createContentGeneratorConfig(
|
||||
} as ContentGeneratorConfig;
|
||||
}
|
||||
|
||||
return {
|
||||
...newContentGeneratorConfig,
|
||||
model: newContentGeneratorConfig?.model || DEFAULT_QWEN_MODEL,
|
||||
} as ContentGeneratorConfig;
|
||||
if (authType === AuthType.USE_ANTHROPIC) {
|
||||
newContentGeneratorConfig = {
|
||||
...newContentGeneratorConfig,
|
||||
apiKey:
|
||||
newContentGeneratorConfig.apiKey || process.env['ANTHROPIC_API_KEY'],
|
||||
baseUrl:
|
||||
newContentGeneratorConfig.baseUrl || process.env['ANTHROPIC_BASE_URL'],
|
||||
model: newContentGeneratorConfig.model || process.env['ANTHROPIC_MODEL'],
|
||||
};
|
||||
|
||||
if (!newContentGeneratorConfig.apiKey) {
|
||||
throw new Error('ANTHROPIC_API_KEY environment variable not found.');
|
||||
}
|
||||
|
||||
if (!newContentGeneratorConfig.baseUrl) {
|
||||
throw new Error('ANTHROPIC_BASE_URL environment variable not found.');
|
||||
}
|
||||
|
||||
if (!newContentGeneratorConfig.model) {
|
||||
throw new Error('ANTHROPIC_MODEL environment variable not found.');
|
||||
}
|
||||
}
|
||||
|
||||
if (authType === AuthType.USE_GEMINI) {
|
||||
newContentGeneratorConfig = {
|
||||
...newContentGeneratorConfig,
|
||||
apiKey: newContentGeneratorConfig.apiKey || process.env['GEMINI_API_KEY'],
|
||||
model: newContentGeneratorConfig.model || process.env['GEMINI_MODEL'],
|
||||
};
|
||||
|
||||
if (!newContentGeneratorConfig.apiKey) {
|
||||
throw new Error('GEMINI_API_KEY environment variable not found.');
|
||||
}
|
||||
|
||||
if (!newContentGeneratorConfig.model) {
|
||||
throw new Error('GEMINI_MODEL environment variable not found.');
|
||||
}
|
||||
}
|
||||
|
||||
if (authType === AuthType.USE_VERTEX_AI) {
|
||||
newContentGeneratorConfig = {
|
||||
...newContentGeneratorConfig,
|
||||
apiKey: newContentGeneratorConfig.apiKey || process.env['GOOGLE_API_KEY'],
|
||||
model: newContentGeneratorConfig.model || process.env['GOOGLE_MODEL'],
|
||||
};
|
||||
|
||||
if (!newContentGeneratorConfig.apiKey) {
|
||||
throw new Error('GOOGLE_API_KEY environment variable not found.');
|
||||
}
|
||||
|
||||
if (!newContentGeneratorConfig.model) {
|
||||
throw new Error('GOOGLE_MODEL environment variable not found.');
|
||||
}
|
||||
}
|
||||
|
||||
return newContentGeneratorConfig as ContentGeneratorConfig;
|
||||
}
|
||||
|
||||
export async function createContentGenerator(
|
||||
@@ -115,19 +180,9 @@ export async function createContentGenerator(
|
||||
gcConfig: Config,
|
||||
isInitialAuth?: boolean,
|
||||
): Promise<ContentGenerator> {
|
||||
if (
|
||||
config.authType === AuthType.USE_GEMINI ||
|
||||
config.authType === AuthType.USE_VERTEX_AI
|
||||
) {
|
||||
const { createGeminiContentGenerator } = await import(
|
||||
'./geminiContentGenerator/index.js'
|
||||
);
|
||||
return createGeminiContentGenerator(config, gcConfig);
|
||||
}
|
||||
|
||||
if (config.authType === AuthType.USE_OPENAI) {
|
||||
if (!config.apiKey) {
|
||||
throw new Error('OpenAI API key is required');
|
||||
throw new Error('OPENAI_API_KEY environment variable not found.');
|
||||
}
|
||||
|
||||
// Import OpenAIContentGenerator dynamically to avoid circular dependencies
|
||||
@@ -136,7 +191,8 @@ export async function createContentGenerator(
|
||||
);
|
||||
|
||||
// Always use OpenAIContentGenerator, logging is controlled by enableOpenAILogging flag
|
||||
return createOpenAIContentGenerator(config, gcConfig);
|
||||
const generator = createOpenAIContentGenerator(config, gcConfig);
|
||||
return new LoggingContentGenerator(generator, gcConfig);
|
||||
}
|
||||
|
||||
if (config.authType === AuthType.QWEN_OAUTH) {
|
||||
@@ -157,7 +213,8 @@ export async function createContentGenerator(
|
||||
);
|
||||
|
||||
// Create the content generator with dynamic token management
|
||||
return new QwenContentGenerator(qwenClient, config, gcConfig);
|
||||
const generator = new QwenContentGenerator(qwenClient, config, gcConfig);
|
||||
return new LoggingContentGenerator(generator, gcConfig);
|
||||
} catch (error) {
|
||||
throw new Error(
|
||||
`${error instanceof Error ? error.message : String(error)}`,
|
||||
@@ -165,6 +222,30 @@ export async function createContentGenerator(
|
||||
}
|
||||
}
|
||||
|
||||
if (config.authType === AuthType.USE_ANTHROPIC) {
|
||||
if (!config.apiKey) {
|
||||
throw new Error('ANTHROPIC_API_KEY environment variable not found.');
|
||||
}
|
||||
|
||||
const { createAnthropicContentGenerator } = await import(
|
||||
'./anthropicContentGenerator/index.js'
|
||||
);
|
||||
|
||||
const generator = createAnthropicContentGenerator(config, gcConfig);
|
||||
return new LoggingContentGenerator(generator, gcConfig);
|
||||
}
|
||||
|
||||
if (
|
||||
config.authType === AuthType.USE_GEMINI ||
|
||||
config.authType === AuthType.USE_VERTEX_AI
|
||||
) {
|
||||
const { createGeminiContentGenerator } = await import(
|
||||
'./geminiContentGenerator/index.js'
|
||||
);
|
||||
const generator = createGeminiContentGenerator(config, gcConfig);
|
||||
return new LoggingContentGenerator(generator, gcConfig);
|
||||
}
|
||||
|
||||
throw new Error(
|
||||
`Error creating contentGenerator: Unsupported authType: ${config.authType}`,
|
||||
);
|
||||
|
||||
@@ -720,66 +720,6 @@ describe('GeminiChat', () => {
|
||||
);
|
||||
});
|
||||
|
||||
it('should handle summarized thinking by conditionally including thoughts in history', async () => {
|
||||
// Case 1: useSummarizedThinking is true -> thoughts NOT in history
|
||||
vi.mocked(mockContentGenerator.useSummarizedThinking).mockReturnValue(
|
||||
true,
|
||||
);
|
||||
const stream1 = (async function* () {
|
||||
yield {
|
||||
candidates: [
|
||||
{
|
||||
content: {
|
||||
role: 'model',
|
||||
parts: [{ thought: true, text: 'T1' }, { text: 'A1' }],
|
||||
},
|
||||
finishReason: 'STOP',
|
||||
},
|
||||
],
|
||||
} as unknown as GenerateContentResponse;
|
||||
})();
|
||||
vi.mocked(mockContentGenerator.generateContentStream).mockResolvedValue(
|
||||
stream1,
|
||||
);
|
||||
|
||||
const res1 = await chat.sendMessageStream('m1', { message: 'h1' }, 'p1');
|
||||
for await (const _ of res1);
|
||||
|
||||
const history1 = chat.getHistory();
|
||||
expect(history1[1].parts).toEqual([{ text: 'A1' }]);
|
||||
|
||||
// Case 2: useSummarizedThinking is false -> thoughts ARE in history
|
||||
chat.clearHistory();
|
||||
vi.mocked(mockContentGenerator.useSummarizedThinking).mockReturnValue(
|
||||
false,
|
||||
);
|
||||
const stream2 = (async function* () {
|
||||
yield {
|
||||
candidates: [
|
||||
{
|
||||
content: {
|
||||
role: 'model',
|
||||
parts: [{ thought: true, text: 'T2' }, { text: 'A2' }],
|
||||
},
|
||||
finishReason: 'STOP',
|
||||
},
|
||||
],
|
||||
} as unknown as GenerateContentResponse;
|
||||
})();
|
||||
vi.mocked(mockContentGenerator.generateContentStream).mockResolvedValue(
|
||||
stream2,
|
||||
);
|
||||
|
||||
const res2 = await chat.sendMessageStream('m1', { message: 'h1' }, 'p2');
|
||||
for await (const _ of res2);
|
||||
|
||||
const history2 = chat.getHistory();
|
||||
expect(history2[1].parts).toEqual([
|
||||
{ text: 'T2', thought: true },
|
||||
{ text: 'A2' },
|
||||
]);
|
||||
});
|
||||
|
||||
it('should keep parts with thoughtSignature when consolidating history', async () => {
|
||||
const stream = (async function* () {
|
||||
yield {
|
||||
|
||||
@@ -559,14 +559,25 @@ export class GeminiChat {
|
||||
yield chunk; // Yield every chunk to the UI immediately.
|
||||
}
|
||||
|
||||
let thoughtText = '';
|
||||
// Only include thoughts if not using summarized thinking.
|
||||
if (!this.config.getContentGenerator().useSummarizedThinking()) {
|
||||
thoughtText = allModelParts
|
||||
.filter((part) => part.thought)
|
||||
.map((part) => part.text)
|
||||
.join('')
|
||||
.trim();
|
||||
let thoughtContentPart: Part | undefined;
|
||||
const thoughtText = allModelParts
|
||||
.filter((part) => part.thought)
|
||||
.map((part) => part.text)
|
||||
.join('')
|
||||
.trim();
|
||||
|
||||
if (thoughtText !== '') {
|
||||
thoughtContentPart = {
|
||||
text: thoughtText,
|
||||
thought: true,
|
||||
};
|
||||
|
||||
const thoughtSignature = allModelParts.filter(
|
||||
(part) => part.thoughtSignature && part.thought,
|
||||
)?.[0]?.thoughtSignature;
|
||||
if (thoughtContentPart && thoughtSignature) {
|
||||
thoughtContentPart.thoughtSignature = thoughtSignature;
|
||||
}
|
||||
}
|
||||
|
||||
const contentParts = allModelParts.filter((part) => !part.thought);
|
||||
@@ -592,11 +603,11 @@ export class GeminiChat {
|
||||
.trim();
|
||||
|
||||
// Record assistant turn with raw Content and metadata
|
||||
if (thoughtText || contentText || hasToolCall || usageMetadata) {
|
||||
if (thoughtContentPart || contentText || hasToolCall || usageMetadata) {
|
||||
this.chatRecordingService?.recordAssistantTurn({
|
||||
model,
|
||||
message: [
|
||||
...(thoughtText ? [{ text: thoughtText, thought: true }] : []),
|
||||
...(thoughtContentPart ? [thoughtContentPart] : []),
|
||||
...(contentText ? [{ text: contentText }] : []),
|
||||
...(hasToolCall
|
||||
? contentParts
|
||||
@@ -632,7 +643,7 @@ export class GeminiChat {
|
||||
this.history.push({
|
||||
role: 'model',
|
||||
parts: [
|
||||
...(thoughtText ? [{ text: thoughtText, thought: true }] : []),
|
||||
...(thoughtContentPart ? [thoughtContentPart] : []),
|
||||
...consolidatedHistoryParts,
|
||||
],
|
||||
});
|
||||
|
||||
@@ -39,7 +39,7 @@ export class GeminiContentGenerator implements ContentGenerator {
|
||||
this.contentGeneratorConfig = contentGeneratorConfig;
|
||||
}
|
||||
|
||||
private buildSamplingParameters(
|
||||
private buildGenerateContentConfig(
|
||||
request: GenerateContentParameters,
|
||||
): GenerateContentConfig {
|
||||
const configSamplingParams = this.contentGeneratorConfig?.samplingParams;
|
||||
@@ -84,17 +84,7 @@ export class GeminiContentGenerator implements ContentGenerator {
|
||||
'frequencyPenalty',
|
||||
),
|
||||
thinkingConfig: getParameterValue(
|
||||
this.contentGeneratorConfig?.reasoning
|
||||
? {
|
||||
includeThoughts: true,
|
||||
thinkingLevel: (this.contentGeneratorConfig.reasoning.effort ===
|
||||
'low'
|
||||
? 'LOW'
|
||||
: this.contentGeneratorConfig.reasoning.effort === 'high'
|
||||
? 'HIGH'
|
||||
: 'THINKING_LEVEL_UNSPECIFIED') as ThinkingLevel,
|
||||
}
|
||||
: undefined,
|
||||
this.buildThinkingConfig(),
|
||||
'thinkingConfig',
|
||||
{
|
||||
includeThoughts: true,
|
||||
@@ -104,13 +94,40 @@ export class GeminiContentGenerator implements ContentGenerator {
|
||||
};
|
||||
}
|
||||
|
||||
private buildThinkingConfig():
|
||||
| { includeThoughts: boolean; thinkingLevel?: ThinkingLevel }
|
||||
| undefined {
|
||||
const reasoning = this.contentGeneratorConfig?.reasoning;
|
||||
|
||||
if (reasoning === false) {
|
||||
return { includeThoughts: false };
|
||||
}
|
||||
|
||||
if (reasoning) {
|
||||
const thinkingLevel = (
|
||||
reasoning.effort === 'low'
|
||||
? 'LOW'
|
||||
: reasoning.effort === 'high'
|
||||
? 'HIGH'
|
||||
: 'THINKING_LEVEL_UNSPECIFIED'
|
||||
) as ThinkingLevel;
|
||||
|
||||
return {
|
||||
includeThoughts: true,
|
||||
thinkingLevel,
|
||||
};
|
||||
}
|
||||
|
||||
return undefined;
|
||||
}
|
||||
|
||||
async generateContent(
|
||||
request: GenerateContentParameters,
|
||||
_userPromptId: string,
|
||||
): Promise<GenerateContentResponse> {
|
||||
const finalRequest = {
|
||||
...request,
|
||||
config: this.buildSamplingParameters(request),
|
||||
config: this.buildGenerateContentConfig(request),
|
||||
};
|
||||
return this.googleGenAI.models.generateContent(finalRequest);
|
||||
}
|
||||
@@ -121,7 +138,7 @@ export class GeminiContentGenerator implements ContentGenerator {
|
||||
): Promise<AsyncGenerator<GenerateContentResponse>> {
|
||||
const finalRequest = {
|
||||
...request,
|
||||
config: this.buildSamplingParameters(request),
|
||||
config: this.buildGenerateContentConfig(request),
|
||||
};
|
||||
return this.googleGenAI.models.generateContentStream(finalRequest);
|
||||
}
|
||||
|
||||
@@ -7,7 +7,6 @@
|
||||
import { describe, it, expect, vi, beforeEach } from 'vitest';
|
||||
import { createGeminiContentGenerator } from './index.js';
|
||||
import { GeminiContentGenerator } from './geminiContentGenerator.js';
|
||||
import { LoggingContentGenerator } from './loggingContentGenerator.js';
|
||||
import type { Config } from '../../config/config.js';
|
||||
import { AuthType } from '../contentGenerator.js';
|
||||
|
||||
@@ -15,10 +14,6 @@ vi.mock('./geminiContentGenerator.js', () => ({
|
||||
GeminiContentGenerator: vi.fn().mockImplementation(() => ({})),
|
||||
}));
|
||||
|
||||
vi.mock('./loggingContentGenerator.js', () => ({
|
||||
LoggingContentGenerator: vi.fn().mockImplementation((wrapped) => wrapped),
|
||||
}));
|
||||
|
||||
describe('createGeminiContentGenerator', () => {
|
||||
let mockConfig: Config;
|
||||
|
||||
@@ -31,7 +26,7 @@ describe('createGeminiContentGenerator', () => {
|
||||
} as unknown as Config;
|
||||
});
|
||||
|
||||
it('should create a GeminiContentGenerator wrapped in LoggingContentGenerator', () => {
|
||||
it('should create a GeminiContentGenerator', () => {
|
||||
const config = {
|
||||
model: 'gemini-1.5-flash',
|
||||
apiKey: 'test-key',
|
||||
@@ -41,7 +36,6 @@ describe('createGeminiContentGenerator', () => {
|
||||
const generator = createGeminiContentGenerator(config, mockConfig);
|
||||
|
||||
expect(GeminiContentGenerator).toHaveBeenCalled();
|
||||
expect(LoggingContentGenerator).toHaveBeenCalled();
|
||||
expect(generator).toBeDefined();
|
||||
});
|
||||
});
|
||||
|
||||
@@ -11,10 +11,8 @@ import type {
|
||||
} from '../contentGenerator.js';
|
||||
import type { Config } from '../../config/config.js';
|
||||
import { InstallationManager } from '../../utils/installationManager.js';
|
||||
import { LoggingContentGenerator } from './loggingContentGenerator.js';
|
||||
|
||||
export { GeminiContentGenerator } from './geminiContentGenerator.js';
|
||||
export { LoggingContentGenerator } from './loggingContentGenerator.js';
|
||||
|
||||
/**
|
||||
* Create a Gemini content generator.
|
||||
@@ -51,5 +49,5 @@ export function createGeminiContentGenerator(
|
||||
config,
|
||||
);
|
||||
|
||||
return new LoggingContentGenerator(geminiContentGenerator, gcConfig);
|
||||
return geminiContentGenerator;
|
||||
}
|
||||
|
||||
7
packages/core/src/core/loggingContentGenerator/index.ts
Normal file
7
packages/core/src/core/loggingContentGenerator/index.ts
Normal file
@@ -0,0 +1,7 @@
|
||||
/**
|
||||
* @license
|
||||
* Copyright 2025 Qwen
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
export { LoggingContentGenerator } from './loggingContentGenerator.js';
|
||||
@@ -0,0 +1,371 @@
|
||||
/**
|
||||
* @license
|
||||
* Copyright 2025 Qwen
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
import { describe, it, expect, vi, beforeEach, afterEach } from 'vitest';
|
||||
import type {
|
||||
GenerateContentParameters,
|
||||
GenerateContentResponseUsageMetadata,
|
||||
} from '@google/genai';
|
||||
import { GenerateContentResponse } from '@google/genai';
|
||||
import type { Config } from '../../config/config.js';
|
||||
import type { ContentGenerator } from '../contentGenerator.js';
|
||||
import { LoggingContentGenerator } from './index.js';
|
||||
import { OpenAIContentConverter } from '../openaiContentGenerator/converter.js';
|
||||
import {
|
||||
logApiRequest,
|
||||
logApiResponse,
|
||||
logApiError,
|
||||
} from '../../telemetry/loggers.js';
|
||||
import { OpenAILogger } from '../../utils/openaiLogger.js';
|
||||
import type OpenAI from 'openai';
|
||||
|
||||
vi.mock('../../telemetry/loggers.js', () => ({
|
||||
logApiRequest: vi.fn(),
|
||||
logApiResponse: vi.fn(),
|
||||
logApiError: vi.fn(),
|
||||
}));
|
||||
|
||||
vi.mock('../../utils/openaiLogger.js', () => ({
|
||||
OpenAILogger: vi.fn().mockImplementation(() => ({
|
||||
logInteraction: vi.fn().mockResolvedValue(undefined),
|
||||
})),
|
||||
}));
|
||||
|
||||
const convertGeminiRequestToOpenAISpy = vi
|
||||
.spyOn(OpenAIContentConverter.prototype, 'convertGeminiRequestToOpenAI')
|
||||
.mockReturnValue([{ role: 'user', content: 'converted' }]);
|
||||
const convertGeminiToolsToOpenAISpy = vi
|
||||
.spyOn(OpenAIContentConverter.prototype, 'convertGeminiToolsToOpenAI')
|
||||
.mockResolvedValue([{ type: 'function', function: { name: 'tool' } }]);
|
||||
const convertGeminiResponseToOpenAISpy = vi
|
||||
.spyOn(OpenAIContentConverter.prototype, 'convertGeminiResponseToOpenAI')
|
||||
.mockReturnValue({
|
||||
id: 'openai-response',
|
||||
object: 'chat.completion',
|
||||
created: 123456789,
|
||||
model: 'test-model',
|
||||
choices: [],
|
||||
} as OpenAI.Chat.ChatCompletion);
|
||||
|
||||
const createConfig = (overrides: Record<string, unknown> = {}): Config =>
|
||||
({
|
||||
getContentGeneratorConfig: () => ({
|
||||
authType: 'openai',
|
||||
enableOpenAILogging: false,
|
||||
...overrides,
|
||||
}),
|
||||
}) as Config;
|
||||
|
||||
const createWrappedGenerator = (
|
||||
generateContent: ContentGenerator['generateContent'],
|
||||
generateContentStream: ContentGenerator['generateContentStream'],
|
||||
): ContentGenerator =>
|
||||
({
|
||||
generateContent,
|
||||
generateContentStream,
|
||||
countTokens: vi.fn(),
|
||||
embedContent: vi.fn(),
|
||||
useSummarizedThinking: vi.fn().mockReturnValue(false),
|
||||
}) as ContentGenerator;
|
||||
|
||||
const createResponse = (
|
||||
responseId: string,
|
||||
modelVersion: string,
|
||||
parts: Array<Record<string, unknown>>,
|
||||
usageMetadata?: GenerateContentResponseUsageMetadata,
|
||||
finishReason?: string,
|
||||
): GenerateContentResponse => {
|
||||
const response = new GenerateContentResponse();
|
||||
response.responseId = responseId;
|
||||
response.modelVersion = modelVersion;
|
||||
response.usageMetadata = usageMetadata;
|
||||
response.candidates = [
|
||||
{
|
||||
content: {
|
||||
role: 'model',
|
||||
parts: parts as never[],
|
||||
},
|
||||
finishReason: finishReason as never,
|
||||
index: 0,
|
||||
safetyRatings: [],
|
||||
},
|
||||
];
|
||||
return response;
|
||||
};
|
||||
|
||||
describe('LoggingContentGenerator', () => {
|
||||
beforeEach(() => {
|
||||
vi.clearAllMocks();
|
||||
});
|
||||
|
||||
afterEach(() => {
|
||||
convertGeminiRequestToOpenAISpy.mockClear();
|
||||
convertGeminiToolsToOpenAISpy.mockClear();
|
||||
convertGeminiResponseToOpenAISpy.mockClear();
|
||||
});
|
||||
|
||||
it('logs request/response, normalizes thought parts, and logs OpenAI interaction', async () => {
|
||||
const wrapped = createWrappedGenerator(
|
||||
vi.fn().mockResolvedValue(
|
||||
createResponse(
|
||||
'resp-1',
|
||||
'model-v2',
|
||||
[{ text: 'ok' }],
|
||||
{
|
||||
promptTokenCount: 3,
|
||||
candidatesTokenCount: 5,
|
||||
totalTokenCount: 8,
|
||||
},
|
||||
'STOP',
|
||||
),
|
||||
),
|
||||
vi.fn(),
|
||||
);
|
||||
const generator = new LoggingContentGenerator(
|
||||
wrapped,
|
||||
createConfig({
|
||||
enableOpenAILogging: true,
|
||||
openAILoggingDir: 'logs',
|
||||
schemaCompliance: 'openapi_30',
|
||||
}),
|
||||
);
|
||||
|
||||
const request = {
|
||||
model: 'test-model',
|
||||
contents: [
|
||||
{
|
||||
role: 'user',
|
||||
parts: [
|
||||
{ text: 'Hello', thought: 'internal' },
|
||||
{
|
||||
functionCall: { id: 'call-1', name: 'tool', args: '{}' },
|
||||
thought: 'strip-me',
|
||||
},
|
||||
null,
|
||||
],
|
||||
},
|
||||
],
|
||||
config: {
|
||||
temperature: 0.3,
|
||||
topP: 0.9,
|
||||
maxOutputTokens: 256,
|
||||
presencePenalty: 0.2,
|
||||
frequencyPenalty: 0.1,
|
||||
tools: [
|
||||
{
|
||||
functionDeclarations: [
|
||||
{ name: 'tool', description: 'desc', parameters: {} },
|
||||
],
|
||||
},
|
||||
],
|
||||
},
|
||||
} as unknown as GenerateContentParameters;
|
||||
|
||||
const response = await generator.generateContent(request, 'prompt-1');
|
||||
|
||||
expect(response.responseId).toBe('resp-1');
|
||||
expect(logApiRequest).toHaveBeenCalledTimes(1);
|
||||
const [, requestEvent] = vi.mocked(logApiRequest).mock.calls[0];
|
||||
const loggedContents = JSON.parse(requestEvent.request_text || '[]');
|
||||
expect(loggedContents[0].parts[0]).toEqual({
|
||||
text: 'Hello\n[Thought: internal]',
|
||||
});
|
||||
expect(loggedContents[0].parts[1]).toEqual({
|
||||
functionCall: { id: 'call-1', name: 'tool', args: '{}' },
|
||||
});
|
||||
|
||||
expect(logApiResponse).toHaveBeenCalledTimes(1);
|
||||
const [, responseEvent] = vi.mocked(logApiResponse).mock.calls[0];
|
||||
expect(responseEvent.response_id).toBe('resp-1');
|
||||
expect(responseEvent.model).toBe('model-v2');
|
||||
expect(responseEvent.prompt_id).toBe('prompt-1');
|
||||
expect(responseEvent.input_token_count).toBe(3);
|
||||
|
||||
expect(convertGeminiRequestToOpenAISpy).toHaveBeenCalledTimes(1);
|
||||
expect(convertGeminiToolsToOpenAISpy).toHaveBeenCalledTimes(1);
|
||||
expect(convertGeminiResponseToOpenAISpy).toHaveBeenCalledTimes(1);
|
||||
|
||||
const openaiLoggerInstance = vi.mocked(OpenAILogger).mock.results[0]
|
||||
?.value as { logInteraction: ReturnType<typeof vi.fn> };
|
||||
expect(openaiLoggerInstance.logInteraction).toHaveBeenCalledTimes(1);
|
||||
const [openaiRequest, openaiResponse, openaiError] =
|
||||
openaiLoggerInstance.logInteraction.mock.calls[0];
|
||||
expect(openaiRequest).toEqual(
|
||||
expect.objectContaining({
|
||||
model: 'test-model',
|
||||
messages: [{ role: 'user', content: 'converted' }],
|
||||
tools: [{ type: 'function', function: { name: 'tool' } }],
|
||||
temperature: 0.3,
|
||||
top_p: 0.9,
|
||||
max_tokens: 256,
|
||||
presence_penalty: 0.2,
|
||||
frequency_penalty: 0.1,
|
||||
}),
|
||||
);
|
||||
expect(openaiResponse).toEqual({
|
||||
id: 'openai-response',
|
||||
object: 'chat.completion',
|
||||
created: 123456789,
|
||||
model: 'test-model',
|
||||
choices: [],
|
||||
});
|
||||
expect(openaiError).toBeUndefined();
|
||||
});
|
||||
|
||||
it('logs errors with status code and request id, then rethrows', async () => {
|
||||
const error = Object.assign(new Error('boom'), {
|
||||
code: 429,
|
||||
request_id: 'req-99',
|
||||
type: 'rate_limit',
|
||||
});
|
||||
const wrapped = createWrappedGenerator(
|
||||
vi.fn().mockRejectedValue(error),
|
||||
vi.fn(),
|
||||
);
|
||||
const generator = new LoggingContentGenerator(
|
||||
wrapped,
|
||||
createConfig({ enableOpenAILogging: true }),
|
||||
);
|
||||
|
||||
const request = {
|
||||
model: 'test-model',
|
||||
contents: 'Hello',
|
||||
} as unknown as GenerateContentParameters;
|
||||
|
||||
await expect(
|
||||
generator.generateContent(request, 'prompt-2'),
|
||||
).rejects.toThrow('boom');
|
||||
|
||||
expect(logApiError).toHaveBeenCalledTimes(1);
|
||||
const [, errorEvent] = vi.mocked(logApiError).mock.calls[0];
|
||||
expect(errorEvent.response_id).toBe('req-99');
|
||||
expect(errorEvent.status_code).toBe(429);
|
||||
expect(errorEvent.error_type).toBe('rate_limit');
|
||||
expect(errorEvent.prompt_id).toBe('prompt-2');
|
||||
|
||||
const openaiLoggerInstance = vi.mocked(OpenAILogger).mock.results[0]
|
||||
?.value as { logInteraction: ReturnType<typeof vi.fn> };
|
||||
const [, , loggedError] = openaiLoggerInstance.logInteraction.mock.calls[0];
|
||||
expect(loggedError).toBeInstanceOf(Error);
|
||||
expect((loggedError as Error).message).toBe('boom');
|
||||
});
|
||||
|
||||
it('logs streaming responses and consolidates tool calls', async () => {
|
||||
const usage1 = {
|
||||
promptTokenCount: 1,
|
||||
} as GenerateContentResponseUsageMetadata;
|
||||
const usage2 = {
|
||||
promptTokenCount: 2,
|
||||
candidatesTokenCount: 4,
|
||||
totalTokenCount: 6,
|
||||
} as GenerateContentResponseUsageMetadata;
|
||||
|
||||
const response1 = createResponse(
|
||||
'resp-1',
|
||||
'model-stream',
|
||||
[
|
||||
{ text: 'Hello' },
|
||||
{ functionCall: { id: 'call-1', name: 'tool', args: '{}' } },
|
||||
],
|
||||
usage1,
|
||||
);
|
||||
const response2 = createResponse(
|
||||
'resp-2',
|
||||
'model-stream',
|
||||
[
|
||||
{ text: ' world' },
|
||||
{ functionCall: { id: 'call-1', name: 'tool', args: '{"x":1}' } },
|
||||
{ functionResponse: { name: 'tool', response: { output: 'ok' } } },
|
||||
],
|
||||
usage2,
|
||||
'STOP',
|
||||
);
|
||||
|
||||
const wrapped = createWrappedGenerator(
|
||||
vi.fn(),
|
||||
vi.fn().mockResolvedValue(
|
||||
(async function* () {
|
||||
yield response1;
|
||||
yield response2;
|
||||
})(),
|
||||
),
|
||||
);
|
||||
const generator = new LoggingContentGenerator(
|
||||
wrapped,
|
||||
createConfig({ enableOpenAILogging: true }),
|
||||
);
|
||||
|
||||
const request = {
|
||||
model: 'test-model',
|
||||
contents: 'Hello',
|
||||
} as unknown as GenerateContentParameters;
|
||||
|
||||
const stream = await generator.generateContentStream(request, 'prompt-3');
|
||||
const seen: GenerateContentResponse[] = [];
|
||||
for await (const item of stream) {
|
||||
seen.push(item);
|
||||
}
|
||||
expect(seen).toHaveLength(2);
|
||||
|
||||
expect(logApiResponse).toHaveBeenCalledTimes(1);
|
||||
const [, responseEvent] = vi.mocked(logApiResponse).mock.calls[0];
|
||||
expect(responseEvent.response_id).toBe('resp-1');
|
||||
expect(responseEvent.input_token_count).toBe(2);
|
||||
|
||||
expect(convertGeminiResponseToOpenAISpy).toHaveBeenCalledTimes(1);
|
||||
const [consolidatedResponse] =
|
||||
convertGeminiResponseToOpenAISpy.mock.calls[0];
|
||||
const consolidatedParts =
|
||||
consolidatedResponse.candidates?.[0]?.content?.parts || [];
|
||||
expect(consolidatedParts).toEqual([
|
||||
{ text: 'Hello' },
|
||||
{ functionCall: { id: 'call-1', name: 'tool', args: '{"x":1}' } },
|
||||
{ text: ' world' },
|
||||
{ functionResponse: { name: 'tool', response: { output: 'ok' } } },
|
||||
]);
|
||||
expect(consolidatedResponse.usageMetadata).toBe(usage2);
|
||||
expect(consolidatedResponse.responseId).toBe('resp-2');
|
||||
expect(consolidatedResponse.candidates?.[0]?.finishReason).toBe('STOP');
|
||||
});
|
||||
|
||||
it('logs stream errors and skips response logging', async () => {
|
||||
const response1 = createResponse('resp-1', 'model-stream', [
|
||||
{ text: 'partial' },
|
||||
]);
|
||||
const streamError = new Error('stream-fail');
|
||||
const wrapped = createWrappedGenerator(
|
||||
vi.fn(),
|
||||
vi.fn().mockResolvedValue(
|
||||
(async function* () {
|
||||
yield response1;
|
||||
throw streamError;
|
||||
})(),
|
||||
),
|
||||
);
|
||||
const generator = new LoggingContentGenerator(
|
||||
wrapped,
|
||||
createConfig({ enableOpenAILogging: true }),
|
||||
);
|
||||
|
||||
const request = {
|
||||
model: 'test-model',
|
||||
contents: 'Hello',
|
||||
} as unknown as GenerateContentParameters;
|
||||
|
||||
const stream = await generator.generateContentStream(request, 'prompt-4');
|
||||
await expect(async () => {
|
||||
for await (const _item of stream) {
|
||||
// Consume stream to trigger error.
|
||||
}
|
||||
}).rejects.toThrow('stream-fail');
|
||||
|
||||
expect(logApiResponse).not.toHaveBeenCalled();
|
||||
expect(logApiError).toHaveBeenCalledTimes(1);
|
||||
const openaiLoggerInstance = vi.mocked(OpenAILogger).mock.results[0]
|
||||
?.value as { logInteraction: ReturnType<typeof vi.fn> };
|
||||
expect(openaiLoggerInstance.logInteraction).toHaveBeenCalledTimes(1);
|
||||
});
|
||||
});
|
||||
@@ -4,20 +4,22 @@
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
import type {
|
||||
Content,
|
||||
CountTokensParameters,
|
||||
CountTokensResponse,
|
||||
EmbedContentParameters,
|
||||
EmbedContentResponse,
|
||||
GenerateContentParameters,
|
||||
GenerateContentResponseUsageMetadata,
|
||||
import {
|
||||
GenerateContentResponse,
|
||||
ContentListUnion,
|
||||
ContentUnion,
|
||||
Part,
|
||||
PartUnion,
|
||||
type Content,
|
||||
type CountTokensParameters,
|
||||
type CountTokensResponse,
|
||||
type EmbedContentParameters,
|
||||
type EmbedContentResponse,
|
||||
type GenerateContentParameters,
|
||||
type GenerateContentResponseUsageMetadata,
|
||||
type ContentListUnion,
|
||||
type ContentUnion,
|
||||
type Part,
|
||||
type PartUnion,
|
||||
type FinishReason,
|
||||
} from '@google/genai';
|
||||
import type OpenAI from 'openai';
|
||||
import {
|
||||
ApiRequestEvent,
|
||||
ApiResponseEvent,
|
||||
@@ -31,6 +33,8 @@ import {
|
||||
} from '../../telemetry/loggers.js';
|
||||
import type { ContentGenerator } from '../contentGenerator.js';
|
||||
import { isStructuredError } from '../../utils/quotaErrorDetection.js';
|
||||
import { OpenAIContentConverter } from '../openaiContentGenerator/converter.js';
|
||||
import { OpenAILogger } from '../../utils/openaiLogger.js';
|
||||
|
||||
interface StructuredError {
|
||||
status: number;
|
||||
@@ -40,10 +44,19 @@ interface StructuredError {
|
||||
* A decorator that wraps a ContentGenerator to add logging to API calls.
|
||||
*/
|
||||
export class LoggingContentGenerator implements ContentGenerator {
|
||||
private openaiLogger?: OpenAILogger;
|
||||
private schemaCompliance?: 'auto' | 'openapi_30';
|
||||
|
||||
constructor(
|
||||
private readonly wrapped: ContentGenerator,
|
||||
private readonly config: Config,
|
||||
) {}
|
||||
) {
|
||||
const generatorConfig = this.config.getContentGeneratorConfig();
|
||||
if (generatorConfig?.enableOpenAILogging) {
|
||||
this.openaiLogger = new OpenAILogger(generatorConfig.openAILoggingDir);
|
||||
this.schemaCompliance = generatorConfig.schemaCompliance;
|
||||
}
|
||||
}
|
||||
|
||||
getWrapped(): ContentGenerator {
|
||||
return this.wrapped;
|
||||
@@ -91,21 +104,31 @@ export class LoggingContentGenerator implements ContentGenerator {
|
||||
prompt_id: string,
|
||||
): void {
|
||||
const errorMessage = error instanceof Error ? error.message : String(error);
|
||||
const errorType = error instanceof Error ? error.name : 'unknown';
|
||||
const errorType =
|
||||
(error as { type?: string })?.type ||
|
||||
(error instanceof Error ? error.name : 'unknown');
|
||||
const errorResponseId =
|
||||
(error as { requestID?: string; request_id?: string })?.requestID ||
|
||||
(error as { requestID?: string; request_id?: string })?.request_id ||
|
||||
responseId;
|
||||
const errorStatus =
|
||||
(error as { code?: string | number; status?: number })?.code ??
|
||||
(error as { status?: number })?.status ??
|
||||
(isStructuredError(error)
|
||||
? (error as StructuredError).status
|
||||
: undefined);
|
||||
|
||||
logApiError(
|
||||
this.config,
|
||||
new ApiErrorEvent(
|
||||
responseId,
|
||||
errorResponseId,
|
||||
model,
|
||||
errorMessage,
|
||||
durationMs,
|
||||
prompt_id,
|
||||
this.config.getContentGeneratorConfig()?.authType,
|
||||
errorType,
|
||||
isStructuredError(error)
|
||||
? (error as StructuredError).status
|
||||
: undefined,
|
||||
errorStatus,
|
||||
),
|
||||
);
|
||||
}
|
||||
@@ -116,6 +139,7 @@ export class LoggingContentGenerator implements ContentGenerator {
|
||||
): Promise<GenerateContentResponse> {
|
||||
const startTime = Date.now();
|
||||
this.logApiRequest(this.toContents(req.contents), req.model, userPromptId);
|
||||
const openaiRequest = await this.buildOpenAIRequestForLogging(req);
|
||||
try {
|
||||
const response = await this.wrapped.generateContent(req, userPromptId);
|
||||
const durationMs = Date.now() - startTime;
|
||||
@@ -127,10 +151,12 @@ export class LoggingContentGenerator implements ContentGenerator {
|
||||
response.usageMetadata,
|
||||
JSON.stringify(response),
|
||||
);
|
||||
await this.logOpenAIInteraction(openaiRequest, response);
|
||||
return response;
|
||||
} catch (error) {
|
||||
const durationMs = Date.now() - startTime;
|
||||
this._logApiError(undefined, durationMs, error, req.model, userPromptId);
|
||||
await this.logOpenAIInteraction(openaiRequest, undefined, error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
@@ -141,6 +167,7 @@ export class LoggingContentGenerator implements ContentGenerator {
|
||||
): Promise<AsyncGenerator<GenerateContentResponse>> {
|
||||
const startTime = Date.now();
|
||||
this.logApiRequest(this.toContents(req.contents), req.model, userPromptId);
|
||||
const openaiRequest = await this.buildOpenAIRequestForLogging(req);
|
||||
|
||||
let stream: AsyncGenerator<GenerateContentResponse>;
|
||||
try {
|
||||
@@ -148,6 +175,7 @@ export class LoggingContentGenerator implements ContentGenerator {
|
||||
} catch (error) {
|
||||
const durationMs = Date.now() - startTime;
|
||||
this._logApiError(undefined, durationMs, error, req.model, userPromptId);
|
||||
await this.logOpenAIInteraction(openaiRequest, undefined, error);
|
||||
throw error;
|
||||
}
|
||||
|
||||
@@ -156,6 +184,7 @@ export class LoggingContentGenerator implements ContentGenerator {
|
||||
startTime,
|
||||
userPromptId,
|
||||
req.model,
|
||||
openaiRequest,
|
||||
);
|
||||
}
|
||||
|
||||
@@ -164,6 +193,7 @@ export class LoggingContentGenerator implements ContentGenerator {
|
||||
startTime: number,
|
||||
userPromptId: string,
|
||||
model: string,
|
||||
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
|
||||
): AsyncGenerator<GenerateContentResponse> {
|
||||
const responses: GenerateContentResponse[] = [];
|
||||
|
||||
@@ -186,6 +216,9 @@ export class LoggingContentGenerator implements ContentGenerator {
|
||||
lastUsageMetadata,
|
||||
JSON.stringify(responses),
|
||||
);
|
||||
const consolidatedResponse =
|
||||
this.consolidateGeminiResponsesForLogging(responses);
|
||||
await this.logOpenAIInteraction(openaiRequest, consolidatedResponse);
|
||||
} catch (error) {
|
||||
const durationMs = Date.now() - startTime;
|
||||
this._logApiError(
|
||||
@@ -195,10 +228,182 @@ export class LoggingContentGenerator implements ContentGenerator {
|
||||
responses[0]?.modelVersion || model,
|
||||
userPromptId,
|
||||
);
|
||||
await this.logOpenAIInteraction(openaiRequest, undefined, error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
private async buildOpenAIRequestForLogging(
|
||||
request: GenerateContentParameters,
|
||||
): Promise<OpenAI.Chat.ChatCompletionCreateParams | undefined> {
|
||||
if (!this.openaiLogger) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
const converter = new OpenAIContentConverter(
|
||||
request.model,
|
||||
this.schemaCompliance,
|
||||
);
|
||||
const messages = converter.convertGeminiRequestToOpenAI(request, {
|
||||
cleanOrphanToolCalls: false,
|
||||
});
|
||||
|
||||
const openaiRequest: OpenAI.Chat.ChatCompletionCreateParams = {
|
||||
model: request.model,
|
||||
messages,
|
||||
};
|
||||
|
||||
if (request.config?.tools) {
|
||||
openaiRequest.tools = await converter.convertGeminiToolsToOpenAI(
|
||||
request.config.tools,
|
||||
);
|
||||
}
|
||||
|
||||
if (request.config?.temperature !== undefined) {
|
||||
openaiRequest.temperature = request.config.temperature;
|
||||
}
|
||||
if (request.config?.topP !== undefined) {
|
||||
openaiRequest.top_p = request.config.topP;
|
||||
}
|
||||
if (request.config?.maxOutputTokens !== undefined) {
|
||||
openaiRequest.max_tokens = request.config.maxOutputTokens;
|
||||
}
|
||||
if (request.config?.presencePenalty !== undefined) {
|
||||
openaiRequest.presence_penalty = request.config.presencePenalty;
|
||||
}
|
||||
if (request.config?.frequencyPenalty !== undefined) {
|
||||
openaiRequest.frequency_penalty = request.config.frequencyPenalty;
|
||||
}
|
||||
|
||||
return openaiRequest;
|
||||
}
|
||||
|
||||
private async logOpenAIInteraction(
|
||||
openaiRequest: OpenAI.Chat.ChatCompletionCreateParams | undefined,
|
||||
response?: GenerateContentResponse,
|
||||
error?: unknown,
|
||||
): Promise<void> {
|
||||
if (!this.openaiLogger || !openaiRequest) {
|
||||
return;
|
||||
}
|
||||
|
||||
const openaiResponse = response
|
||||
? this.convertGeminiResponseToOpenAIForLogging(response, openaiRequest)
|
||||
: undefined;
|
||||
|
||||
await this.openaiLogger.logInteraction(
|
||||
openaiRequest,
|
||||
openaiResponse,
|
||||
error instanceof Error
|
||||
? error
|
||||
: error
|
||||
? new Error(String(error))
|
||||
: undefined,
|
||||
);
|
||||
}
|
||||
|
||||
private convertGeminiResponseToOpenAIForLogging(
|
||||
response: GenerateContentResponse,
|
||||
openaiRequest: OpenAI.Chat.ChatCompletionCreateParams,
|
||||
): OpenAI.Chat.ChatCompletion {
|
||||
const converter = new OpenAIContentConverter(
|
||||
openaiRequest.model,
|
||||
this.schemaCompliance,
|
||||
);
|
||||
|
||||
return converter.convertGeminiResponseToOpenAI(response);
|
||||
}
|
||||
|
||||
private consolidateGeminiResponsesForLogging(
|
||||
responses: GenerateContentResponse[],
|
||||
): GenerateContentResponse | undefined {
|
||||
if (responses.length === 0) {
|
||||
return undefined;
|
||||
}
|
||||
|
||||
const consolidated = new GenerateContentResponse();
|
||||
const combinedParts: Part[] = [];
|
||||
const functionCallIndex = new Map<string, number>();
|
||||
let finishReason: FinishReason | undefined;
|
||||
let usageMetadata: GenerateContentResponseUsageMetadata | undefined;
|
||||
|
||||
for (const response of responses) {
|
||||
if (response.usageMetadata) {
|
||||
usageMetadata = response.usageMetadata;
|
||||
}
|
||||
|
||||
const candidate = response.candidates?.[0];
|
||||
if (candidate?.finishReason) {
|
||||
finishReason = candidate.finishReason;
|
||||
}
|
||||
|
||||
const parts = candidate?.content?.parts ?? [];
|
||||
for (const part of parts as Part[]) {
|
||||
if (typeof part === 'string') {
|
||||
combinedParts.push({ text: part });
|
||||
continue;
|
||||
}
|
||||
|
||||
if ('text' in part) {
|
||||
if (part.text) {
|
||||
combinedParts.push({
|
||||
text: part.text,
|
||||
...(part.thought ? { thought: true } : {}),
|
||||
...(part.thoughtSignature
|
||||
? { thoughtSignature: part.thoughtSignature }
|
||||
: {}),
|
||||
});
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if ('functionCall' in part && part.functionCall) {
|
||||
const callKey =
|
||||
part.functionCall.id || part.functionCall.name || 'tool_call';
|
||||
const existingIndex = functionCallIndex.get(callKey);
|
||||
const functionPart = { functionCall: part.functionCall };
|
||||
if (existingIndex !== undefined) {
|
||||
combinedParts[existingIndex] = functionPart;
|
||||
} else {
|
||||
functionCallIndex.set(callKey, combinedParts.length);
|
||||
combinedParts.push(functionPart);
|
||||
}
|
||||
continue;
|
||||
}
|
||||
|
||||
if ('functionResponse' in part && part.functionResponse) {
|
||||
combinedParts.push({ functionResponse: part.functionResponse });
|
||||
continue;
|
||||
}
|
||||
|
||||
combinedParts.push(part);
|
||||
}
|
||||
}
|
||||
|
||||
const lastResponse = responses[responses.length - 1];
|
||||
const lastCandidate = lastResponse.candidates?.[0];
|
||||
|
||||
consolidated.responseId = lastResponse.responseId;
|
||||
consolidated.createTime = lastResponse.createTime;
|
||||
consolidated.modelVersion = lastResponse.modelVersion;
|
||||
consolidated.promptFeedback = lastResponse.promptFeedback;
|
||||
consolidated.usageMetadata = usageMetadata;
|
||||
|
||||
consolidated.candidates = [
|
||||
{
|
||||
content: {
|
||||
role: lastCandidate?.content?.role || 'model',
|
||||
parts: combinedParts,
|
||||
},
|
||||
...(finishReason ? { finishReason } : {}),
|
||||
index: 0,
|
||||
safetyRatings: lastCandidate?.safetyRatings || [],
|
||||
},
|
||||
];
|
||||
|
||||
return consolidated;
|
||||
}
|
||||
|
||||
async countTokens(req: CountTokensParameters): Promise<CountTokensResponse> {
|
||||
return this.wrapped.countTokens(req);
|
||||
}
|
||||
@@ -236,8 +236,9 @@ export class OpenAIContentConverter {
|
||||
*/
|
||||
convertGeminiRequestToOpenAI(
|
||||
request: GenerateContentParameters,
|
||||
options: { cleanOrphanToolCalls: boolean } = { cleanOrphanToolCalls: true },
|
||||
): OpenAI.Chat.ChatCompletionMessageParam[] {
|
||||
const messages: OpenAI.Chat.ChatCompletionMessageParam[] = [];
|
||||
let messages: OpenAI.Chat.ChatCompletionMessageParam[] = [];
|
||||
|
||||
// Handle system instruction from config
|
||||
this.addSystemInstructionMessage(request, messages);
|
||||
@@ -246,11 +247,89 @@ export class OpenAIContentConverter {
|
||||
this.processContents(request.contents, messages);
|
||||
|
||||
// Clean up orphaned tool calls and merge consecutive assistant messages
|
||||
const cleanedMessages = this.cleanOrphanedToolCalls(messages);
|
||||
const mergedMessages =
|
||||
this.mergeConsecutiveAssistantMessages(cleanedMessages);
|
||||
if (options.cleanOrphanToolCalls) {
|
||||
messages = this.cleanOrphanedToolCalls(messages);
|
||||
}
|
||||
messages = this.mergeConsecutiveAssistantMessages(messages);
|
||||
|
||||
return mergedMessages;
|
||||
return messages;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert Gemini response to OpenAI completion format (for logging).
|
||||
*/
|
||||
convertGeminiResponseToOpenAI(
|
||||
response: GenerateContentResponse,
|
||||
): OpenAI.Chat.ChatCompletion {
|
||||
const candidate = response.candidates?.[0];
|
||||
const parts = (candidate?.content?.parts || []) as Part[];
|
||||
const parsedParts = this.parseParts(parts);
|
||||
|
||||
const message: ExtendedCompletionMessage = {
|
||||
role: 'assistant',
|
||||
content: parsedParts.contentParts.join('') || null,
|
||||
refusal: null,
|
||||
};
|
||||
|
||||
const reasoningContent = parsedParts.thoughtParts.join('');
|
||||
if (reasoningContent) {
|
||||
message.reasoning_content = reasoningContent;
|
||||
}
|
||||
|
||||
if (parsedParts.functionCalls.length > 0) {
|
||||
message.tool_calls = parsedParts.functionCalls.map((call, index) => ({
|
||||
id: call.id || `call_${index}`,
|
||||
type: 'function' as const,
|
||||
function: {
|
||||
name: call.name || '',
|
||||
arguments: JSON.stringify(call.args || {}),
|
||||
},
|
||||
}));
|
||||
}
|
||||
|
||||
const finishReason = this.mapGeminiFinishReasonToOpenAI(
|
||||
candidate?.finishReason,
|
||||
);
|
||||
|
||||
const usageMetadata = response.usageMetadata;
|
||||
const usage: OpenAI.CompletionUsage = {
|
||||
prompt_tokens: usageMetadata?.promptTokenCount || 0,
|
||||
completion_tokens: usageMetadata?.candidatesTokenCount || 0,
|
||||
total_tokens: usageMetadata?.totalTokenCount || 0,
|
||||
};
|
||||
|
||||
if (usageMetadata?.cachedContentTokenCount !== undefined) {
|
||||
(
|
||||
usage as OpenAI.CompletionUsage & {
|
||||
prompt_tokens_details?: { cached_tokens?: number };
|
||||
}
|
||||
).prompt_tokens_details = {
|
||||
cached_tokens: usageMetadata.cachedContentTokenCount,
|
||||
};
|
||||
}
|
||||
|
||||
const createdMs = response.createTime
|
||||
? Number(response.createTime)
|
||||
: Date.now();
|
||||
const createdSeconds = Number.isFinite(createdMs)
|
||||
? Math.floor(createdMs / 1000)
|
||||
: Math.floor(Date.now() / 1000);
|
||||
|
||||
return {
|
||||
id: response.responseId || `gemini-${Date.now()}`,
|
||||
object: 'chat.completion',
|
||||
created: createdSeconds,
|
||||
model: response.modelVersion || this.model,
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
message,
|
||||
finish_reason: finishReason,
|
||||
logprobs: null,
|
||||
},
|
||||
],
|
||||
usage,
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
@@ -836,84 +915,6 @@ export class OpenAIContentConverter {
|
||||
return response;
|
||||
}
|
||||
|
||||
/**
|
||||
* Convert Gemini response format to OpenAI chat completion format for logging
|
||||
*/
|
||||
convertGeminiResponseToOpenAI(
|
||||
response: GenerateContentResponse,
|
||||
): OpenAI.Chat.ChatCompletion {
|
||||
const candidate = response.candidates?.[0];
|
||||
const content = candidate?.content;
|
||||
|
||||
let messageContent: string | null = null;
|
||||
const toolCalls: OpenAI.Chat.ChatCompletionMessageToolCall[] = [];
|
||||
|
||||
if (content?.parts) {
|
||||
const textParts: string[] = [];
|
||||
|
||||
for (const part of content.parts) {
|
||||
if ('text' in part && part.text) {
|
||||
textParts.push(part.text);
|
||||
} else if ('functionCall' in part && part.functionCall) {
|
||||
toolCalls.push({
|
||||
id: part.functionCall.id || `call_${toolCalls.length}`,
|
||||
type: 'function' as const,
|
||||
function: {
|
||||
name: part.functionCall.name || '',
|
||||
arguments: JSON.stringify(part.functionCall.args || {}),
|
||||
},
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
messageContent = textParts.join('').trimEnd();
|
||||
}
|
||||
|
||||
const choice: OpenAI.Chat.ChatCompletion.Choice = {
|
||||
index: 0,
|
||||
message: {
|
||||
role: 'assistant',
|
||||
content: messageContent,
|
||||
refusal: null,
|
||||
},
|
||||
finish_reason: this.mapGeminiFinishReasonToOpenAI(
|
||||
candidate?.finishReason,
|
||||
) as OpenAI.Chat.ChatCompletion.Choice['finish_reason'],
|
||||
logprobs: null,
|
||||
};
|
||||
|
||||
if (toolCalls.length > 0) {
|
||||
choice.message.tool_calls = toolCalls;
|
||||
}
|
||||
|
||||
const openaiResponse: OpenAI.Chat.ChatCompletion = {
|
||||
id: response.responseId || `chatcmpl-${Date.now()}`,
|
||||
object: 'chat.completion',
|
||||
created: response.createTime
|
||||
? Number(response.createTime)
|
||||
: Math.floor(Date.now() / 1000),
|
||||
model: this.model,
|
||||
choices: [choice],
|
||||
};
|
||||
|
||||
// Add usage metadata if available
|
||||
if (response.usageMetadata) {
|
||||
openaiResponse.usage = {
|
||||
prompt_tokens: response.usageMetadata.promptTokenCount || 0,
|
||||
completion_tokens: response.usageMetadata.candidatesTokenCount || 0,
|
||||
total_tokens: response.usageMetadata.totalTokenCount || 0,
|
||||
};
|
||||
|
||||
if (response.usageMetadata.cachedContentTokenCount) {
|
||||
openaiResponse.usage.prompt_tokens_details = {
|
||||
cached_tokens: response.usageMetadata.cachedContentTokenCount,
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
return openaiResponse;
|
||||
}
|
||||
|
||||
/**
|
||||
* Map OpenAI finish reasons to Gemini finish reasons
|
||||
*/
|
||||
@@ -931,29 +932,24 @@ export class OpenAIContentConverter {
|
||||
return mapping[openaiReason] || FinishReason.FINISH_REASON_UNSPECIFIED;
|
||||
}
|
||||
|
||||
/**
|
||||
* Map Gemini finish reasons to OpenAI finish reasons
|
||||
*/
|
||||
private mapGeminiFinishReasonToOpenAI(geminiReason?: unknown): string {
|
||||
if (!geminiReason) return 'stop';
|
||||
private mapGeminiFinishReasonToOpenAI(
|
||||
geminiReason?: FinishReason,
|
||||
): 'stop' | 'length' | 'tool_calls' | 'content_filter' | 'function_call' {
|
||||
if (!geminiReason) {
|
||||
return 'stop';
|
||||
}
|
||||
|
||||
switch (geminiReason) {
|
||||
case 'STOP':
|
||||
case 1: // FinishReason.STOP
|
||||
case FinishReason.STOP:
|
||||
return 'stop';
|
||||
case 'MAX_TOKENS':
|
||||
case 2: // FinishReason.MAX_TOKENS
|
||||
case FinishReason.MAX_TOKENS:
|
||||
return 'length';
|
||||
case 'SAFETY':
|
||||
case 3: // FinishReason.SAFETY
|
||||
case FinishReason.SAFETY:
|
||||
return 'content_filter';
|
||||
case 'RECITATION':
|
||||
case 4: // FinishReason.RECITATION
|
||||
return 'content_filter';
|
||||
case 'OTHER':
|
||||
case 5: // FinishReason.OTHER
|
||||
return 'stop';
|
||||
default:
|
||||
if (geminiReason === ('RECITATION' as FinishReason)) {
|
||||
return 'content_filter';
|
||||
}
|
||||
return 'stop';
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
import { describe, it, expect, vi, beforeEach, afterEach } from 'vitest';
|
||||
import type { GenerateContentParameters } from '@google/genai';
|
||||
import { EnhancedErrorHandler } from './errorHandler.js';
|
||||
import type { RequestContext } from './telemetryService.js';
|
||||
import type { RequestContext } from './errorHandler.js';
|
||||
|
||||
describe('EnhancedErrorHandler', () => {
|
||||
let errorHandler: EnhancedErrorHandler;
|
||||
|
||||
@@ -5,7 +5,15 @@
|
||||
*/
|
||||
|
||||
import type { GenerateContentParameters } from '@google/genai';
|
||||
import type { RequestContext } from './telemetryService.js';
|
||||
|
||||
export interface RequestContext {
|
||||
userPromptId: string;
|
||||
model: string;
|
||||
authType: string;
|
||||
startTime: number;
|
||||
duration: number;
|
||||
isStreaming: boolean;
|
||||
}
|
||||
|
||||
export interface ErrorHandler {
|
||||
handle(
|
||||
|
||||
@@ -91,11 +91,4 @@ export function determineProvider(
|
||||
return new DefaultOpenAICompatibleProvider(contentGeneratorConfig, cliConfig);
|
||||
}
|
||||
|
||||
// Services
|
||||
export {
|
||||
type TelemetryService,
|
||||
type RequestContext,
|
||||
DefaultTelemetryService,
|
||||
} from './telemetryService.js';
|
||||
|
||||
export { type ErrorHandler, EnhancedErrorHandler } from './errorHandler.js';
|
||||
|
||||
@@ -11,7 +11,6 @@ import type {
|
||||
} from '@google/genai';
|
||||
import type { PipelineConfig } from './pipeline.js';
|
||||
import { ContentGenerationPipeline } from './pipeline.js';
|
||||
import { DefaultTelemetryService } from './telemetryService.js';
|
||||
import { EnhancedErrorHandler } from './errorHandler.js';
|
||||
import { getDefaultTokenizer } from '../../utils/request-tokenizer/index.js';
|
||||
import type { ContentGeneratorConfig } from '../contentGenerator.js';
|
||||
@@ -29,11 +28,6 @@ export class OpenAIContentGenerator implements ContentGenerator {
|
||||
cliConfig,
|
||||
provider,
|
||||
contentGeneratorConfig,
|
||||
telemetryService: new DefaultTelemetryService(
|
||||
cliConfig,
|
||||
contentGeneratorConfig.enableOpenAILogging,
|
||||
contentGeneratorConfig.openAILoggingDir,
|
||||
),
|
||||
errorHandler: new EnhancedErrorHandler(
|
||||
(error: unknown, request: GenerateContentParameters) =>
|
||||
this.shouldSuppressErrorLogging(error, request),
|
||||
|
||||
@@ -15,7 +15,6 @@ import { OpenAIContentConverter } from './converter.js';
|
||||
import type { Config } from '../../config/config.js';
|
||||
import type { ContentGeneratorConfig, AuthType } from '../contentGenerator.js';
|
||||
import type { OpenAICompatibleProvider } from './provider/index.js';
|
||||
import type { TelemetryService } from './telemetryService.js';
|
||||
import type { ErrorHandler } from './errorHandler.js';
|
||||
|
||||
// Mock dependencies
|
||||
@@ -28,7 +27,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
let mockProvider: OpenAICompatibleProvider;
|
||||
let mockClient: OpenAI;
|
||||
let mockConverter: OpenAIContentConverter;
|
||||
let mockTelemetryService: TelemetryService;
|
||||
let mockErrorHandler: ErrorHandler;
|
||||
let mockContentGeneratorConfig: ContentGeneratorConfig;
|
||||
let mockCliConfig: Config;
|
||||
@@ -63,13 +61,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
getDefaultGenerationConfig: vi.fn().mockReturnValue({}),
|
||||
};
|
||||
|
||||
// Mock telemetry service
|
||||
mockTelemetryService = {
|
||||
logSuccess: vi.fn().mockResolvedValue(undefined),
|
||||
logError: vi.fn().mockResolvedValue(undefined),
|
||||
logStreamingSuccess: vi.fn().mockResolvedValue(undefined),
|
||||
};
|
||||
|
||||
// Mock error handler
|
||||
mockErrorHandler = {
|
||||
handle: vi.fn().mockImplementation((error: unknown) => {
|
||||
@@ -99,7 +90,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
cliConfig: mockCliConfig,
|
||||
provider: mockProvider,
|
||||
contentGeneratorConfig: mockContentGeneratorConfig,
|
||||
telemetryService: mockTelemetryService,
|
||||
errorHandler: mockErrorHandler,
|
||||
};
|
||||
|
||||
@@ -172,17 +162,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
expect(mockConverter.convertOpenAIResponseToGemini).toHaveBeenCalledWith(
|
||||
mockOpenAIResponse,
|
||||
);
|
||||
expect(mockTelemetryService.logSuccess).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
userPromptId,
|
||||
model: 'test-model',
|
||||
authType: 'openai',
|
||||
isStreaming: false,
|
||||
}),
|
||||
mockGeminiResponse,
|
||||
expect.any(Object),
|
||||
mockOpenAIResponse,
|
||||
);
|
||||
});
|
||||
|
||||
it('should handle tools in request', async () => {
|
||||
@@ -268,16 +247,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
'API Error',
|
||||
);
|
||||
|
||||
expect(mockTelemetryService.logError).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
userPromptId,
|
||||
model: 'test-model',
|
||||
authType: 'openai',
|
||||
isStreaming: false,
|
||||
}),
|
||||
testError,
|
||||
expect.any(Object),
|
||||
);
|
||||
expect(mockErrorHandler.handle).toHaveBeenCalledWith(
|
||||
testError,
|
||||
expect.any(Object),
|
||||
@@ -376,17 +345,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
signal: undefined,
|
||||
}),
|
||||
);
|
||||
expect(mockTelemetryService.logStreamingSuccess).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
userPromptId,
|
||||
model: 'test-model',
|
||||
authType: 'openai',
|
||||
isStreaming: true,
|
||||
}),
|
||||
[mockGeminiResponse1, mockGeminiResponse2],
|
||||
expect.any(Object),
|
||||
[mockChunk1, mockChunk2],
|
||||
);
|
||||
});
|
||||
|
||||
it('should filter empty responses', async () => {
|
||||
@@ -490,16 +448,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
|
||||
expect(results).toHaveLength(0); // No results due to error
|
||||
expect(mockConverter.resetStreamingToolCalls).toHaveBeenCalledTimes(2); // Once at start, once on error
|
||||
expect(mockTelemetryService.logError).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
userPromptId,
|
||||
model: 'test-model',
|
||||
authType: 'openai',
|
||||
isStreaming: true,
|
||||
}),
|
||||
testError,
|
||||
expect.any(Object),
|
||||
);
|
||||
expect(mockErrorHandler.handle).toHaveBeenCalledWith(
|
||||
testError,
|
||||
expect.any(Object),
|
||||
@@ -650,18 +598,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
candidatesTokenCount: 20,
|
||||
totalTokenCount: 30,
|
||||
});
|
||||
|
||||
expect(mockTelemetryService.logStreamingSuccess).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
userPromptId,
|
||||
model: 'test-model',
|
||||
authType: 'openai',
|
||||
isStreaming: true,
|
||||
}),
|
||||
results,
|
||||
expect.any(Object),
|
||||
[mockChunk1, mockChunk2, mockChunk3],
|
||||
);
|
||||
});
|
||||
|
||||
it('should handle ideal case where last chunk has both finishReason and usageMetadata', async () => {
|
||||
@@ -853,18 +789,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
candidatesTokenCount: 20,
|
||||
totalTokenCount: 30,
|
||||
});
|
||||
|
||||
expect(mockTelemetryService.logStreamingSuccess).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
userPromptId,
|
||||
model: 'test-model',
|
||||
authType: 'openai',
|
||||
isStreaming: true,
|
||||
}),
|
||||
results,
|
||||
expect.any(Object),
|
||||
[mockChunk1, mockChunk2, mockChunk3],
|
||||
);
|
||||
});
|
||||
|
||||
it('should handle providers that send finishReason and valid usage in same chunk', async () => {
|
||||
@@ -1118,19 +1042,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
await pipeline.execute(request, userPromptId);
|
||||
|
||||
// Assert
|
||||
expect(mockTelemetryService.logSuccess).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
userPromptId,
|
||||
model: 'test-model',
|
||||
authType: 'openai',
|
||||
isStreaming: false,
|
||||
startTime: expect.any(Number),
|
||||
duration: expect.any(Number),
|
||||
}),
|
||||
expect.any(Object),
|
||||
expect.any(Object),
|
||||
expect.any(Object),
|
||||
);
|
||||
});
|
||||
|
||||
it('should create context with correct properties for streaming request', async () => {
|
||||
@@ -1173,19 +1084,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
}
|
||||
|
||||
// Assert
|
||||
expect(mockTelemetryService.logStreamingSuccess).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
userPromptId,
|
||||
model: 'test-model',
|
||||
authType: 'openai',
|
||||
isStreaming: true,
|
||||
startTime: expect.any(Number),
|
||||
duration: expect.any(Number),
|
||||
}),
|
||||
expect.any(Array),
|
||||
expect.any(Object),
|
||||
expect.any(Array),
|
||||
);
|
||||
});
|
||||
|
||||
it('should collect all OpenAI chunks for logging even when Gemini responses are filtered', async () => {
|
||||
@@ -1329,22 +1227,6 @@ describe('ContentGenerationPipeline', () => {
|
||||
// Should only yield the final response (empty ones are filtered)
|
||||
expect(responses).toHaveLength(1);
|
||||
expect(responses[0]).toBe(finalGeminiResponse);
|
||||
|
||||
// Verify telemetry was called with ALL OpenAI chunks, including the filtered ones
|
||||
expect(mockTelemetryService.logStreamingSuccess).toHaveBeenCalledWith(
|
||||
expect.objectContaining({
|
||||
model: 'test-model',
|
||||
duration: expect.any(Number),
|
||||
userPromptId: 'test-prompt-id',
|
||||
authType: 'openai',
|
||||
}),
|
||||
[finalGeminiResponse], // Only the non-empty Gemini response
|
||||
expect.objectContaining({
|
||||
model: 'test-model',
|
||||
messages: [{ role: 'user', content: 'test' }],
|
||||
}),
|
||||
[partialToolCallChunk1, partialToolCallChunk2, finishChunk], // ALL OpenAI chunks
|
||||
);
|
||||
});
|
||||
});
|
||||
});
|
||||
|
||||
@@ -13,14 +13,12 @@ import type { Config } from '../../config/config.js';
|
||||
import type { ContentGeneratorConfig } from '../contentGenerator.js';
|
||||
import type { OpenAICompatibleProvider } from './provider/index.js';
|
||||
import { OpenAIContentConverter } from './converter.js';
|
||||
import type { TelemetryService, RequestContext } from './telemetryService.js';
|
||||
import type { ErrorHandler } from './errorHandler.js';
|
||||
import type { ErrorHandler, RequestContext } from './errorHandler.js';
|
||||
|
||||
export interface PipelineConfig {
|
||||
cliConfig: Config;
|
||||
provider: OpenAICompatibleProvider;
|
||||
contentGeneratorConfig: ContentGeneratorConfig;
|
||||
telemetryService: TelemetryService;
|
||||
errorHandler: ErrorHandler;
|
||||
}
|
||||
|
||||
@@ -46,7 +44,7 @@ export class ContentGenerationPipeline {
|
||||
request,
|
||||
userPromptId,
|
||||
false,
|
||||
async (openaiRequest, context) => {
|
||||
async (openaiRequest) => {
|
||||
const openaiResponse = (await this.client.chat.completions.create(
|
||||
openaiRequest,
|
||||
{
|
||||
@@ -57,14 +55,6 @@ export class ContentGenerationPipeline {
|
||||
const geminiResponse =
|
||||
this.converter.convertOpenAIResponseToGemini(openaiResponse);
|
||||
|
||||
// Log success
|
||||
await this.config.telemetryService.logSuccess(
|
||||
context,
|
||||
geminiResponse,
|
||||
openaiRequest,
|
||||
openaiResponse,
|
||||
);
|
||||
|
||||
return geminiResponse;
|
||||
},
|
||||
);
|
||||
@@ -88,12 +78,7 @@ export class ContentGenerationPipeline {
|
||||
)) as AsyncIterable<OpenAI.Chat.ChatCompletionChunk>;
|
||||
|
||||
// Stage 2: Process stream with conversion and logging
|
||||
return this.processStreamWithLogging(
|
||||
stream,
|
||||
context,
|
||||
openaiRequest,
|
||||
request,
|
||||
);
|
||||
return this.processStreamWithLogging(stream, context, request);
|
||||
},
|
||||
);
|
||||
}
|
||||
@@ -110,11 +95,9 @@ export class ContentGenerationPipeline {
|
||||
private async *processStreamWithLogging(
|
||||
stream: AsyncIterable<OpenAI.Chat.ChatCompletionChunk>,
|
||||
context: RequestContext,
|
||||
openaiRequest: OpenAI.Chat.ChatCompletionCreateParams,
|
||||
request: GenerateContentParameters,
|
||||
): AsyncGenerator<GenerateContentResponse> {
|
||||
const collectedGeminiResponses: GenerateContentResponse[] = [];
|
||||
const collectedOpenAIChunks: OpenAI.Chat.ChatCompletionChunk[] = [];
|
||||
|
||||
// Reset streaming tool calls to prevent data pollution from previous streams
|
||||
this.converter.resetStreamingToolCalls();
|
||||
@@ -125,9 +108,6 @@ export class ContentGenerationPipeline {
|
||||
try {
|
||||
// Stage 2a: Convert and yield each chunk while preserving original
|
||||
for await (const chunk of stream) {
|
||||
// Always collect OpenAI chunks for logging, regardless of Gemini conversion result
|
||||
collectedOpenAIChunks.push(chunk);
|
||||
|
||||
const response = this.converter.convertOpenAIChunkToGemini(chunk);
|
||||
|
||||
// Stage 2b: Filter empty responses to avoid downstream issues
|
||||
@@ -164,15 +144,8 @@ export class ContentGenerationPipeline {
|
||||
yield pendingFinishResponse;
|
||||
}
|
||||
|
||||
// Stage 2e: Stream completed successfully - perform logging with original OpenAI chunks
|
||||
// Stage 2e: Stream completed successfully
|
||||
context.duration = Date.now() - context.startTime;
|
||||
|
||||
await this.config.telemetryService.logStreamingSuccess(
|
||||
context,
|
||||
collectedGeminiResponses,
|
||||
openaiRequest,
|
||||
collectedOpenAIChunks,
|
||||
);
|
||||
} catch (error) {
|
||||
// Clear streaming tool calls on error to prevent data pollution
|
||||
this.converter.resetStreamingToolCalls();
|
||||
@@ -258,7 +231,7 @@ export class ContentGenerationPipeline {
|
||||
const baseRequest: OpenAI.Chat.ChatCompletionCreateParams = {
|
||||
model: this.contentGeneratorConfig.model,
|
||||
messages,
|
||||
...this.buildSamplingParameters(request),
|
||||
...this.buildGenerateContentConfig(request),
|
||||
};
|
||||
|
||||
// Add streaming options if present
|
||||
@@ -280,7 +253,7 @@ export class ContentGenerationPipeline {
|
||||
return this.config.provider.buildRequest(baseRequest, userPromptId);
|
||||
}
|
||||
|
||||
private buildSamplingParameters(
|
||||
private buildGenerateContentConfig(
|
||||
request: GenerateContentParameters,
|
||||
): Record<string, unknown> {
|
||||
const defaultSamplingParams =
|
||||
@@ -316,7 +289,7 @@ export class ContentGenerationPipeline {
|
||||
return value !== undefined ? { [key]: value } : {};
|
||||
};
|
||||
|
||||
const params = {
|
||||
const params: Record<string, unknown> = {
|
||||
// Parameters with request fallback but no defaults
|
||||
...addParameterIfDefined('temperature', 'temperature', 'temperature'),
|
||||
...addParameterIfDefined('top_p', 'top_p', 'topP'),
|
||||
@@ -337,11 +310,24 @@ export class ContentGenerationPipeline {
|
||||
'frequency_penalty',
|
||||
'frequencyPenalty',
|
||||
),
|
||||
...this.buildReasoningConfig(),
|
||||
};
|
||||
|
||||
return params;
|
||||
}
|
||||
|
||||
private buildReasoningConfig(): Record<string, unknown> {
|
||||
const reasoning = this.contentGeneratorConfig.reasoning;
|
||||
|
||||
if (reasoning === false) {
|
||||
return {};
|
||||
}
|
||||
|
||||
return {
|
||||
reasoning_effort: reasoning?.effort ?? 'medium',
|
||||
};
|
||||
}
|
||||
|
||||
/**
|
||||
* Common error handling wrapper for execute methods
|
||||
*/
|
||||
@@ -369,13 +355,7 @@ export class ContentGenerationPipeline {
|
||||
return result;
|
||||
} catch (error) {
|
||||
// Use shared error handling logic
|
||||
return await this.handleError(
|
||||
error,
|
||||
context,
|
||||
request,
|
||||
userPromptId,
|
||||
isStreaming,
|
||||
);
|
||||
return await this.handleError(error, context, request);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -387,37 +367,8 @@ export class ContentGenerationPipeline {
|
||||
error: unknown,
|
||||
context: RequestContext,
|
||||
request: GenerateContentParameters,
|
||||
userPromptId?: string,
|
||||
isStreaming?: boolean,
|
||||
): Promise<never> {
|
||||
context.duration = Date.now() - context.startTime;
|
||||
|
||||
// Build request for logging (may fail, but we still want to log the error)
|
||||
let openaiRequest: OpenAI.Chat.ChatCompletionCreateParams;
|
||||
try {
|
||||
if (userPromptId !== undefined && isStreaming !== undefined) {
|
||||
openaiRequest = await this.buildRequest(
|
||||
request,
|
||||
userPromptId,
|
||||
isStreaming,
|
||||
);
|
||||
} else {
|
||||
// For processStreamWithLogging, we don't have userPromptId/isStreaming,
|
||||
// so create a minimal request
|
||||
openaiRequest = {
|
||||
model: this.contentGeneratorConfig.model,
|
||||
messages: [],
|
||||
};
|
||||
}
|
||||
} catch (_buildError) {
|
||||
// If we can't build the request, create a minimal one for logging
|
||||
openaiRequest = {
|
||||
model: this.contentGeneratorConfig.model,
|
||||
messages: [],
|
||||
};
|
||||
}
|
||||
|
||||
await this.config.telemetryService.logError(context, error, openaiRequest);
|
||||
this.config.errorHandler.handle(error, context, request);
|
||||
}
|
||||
|
||||
|
||||
@@ -39,7 +39,8 @@ export class DashScopeOpenAICompatibleProvider
|
||||
return (
|
||||
authType === AuthType.QWEN_OAUTH ||
|
||||
baseUrl === 'https://dashscope.aliyuncs.com/compatible-mode/v1' ||
|
||||
baseUrl === 'https://dashscope-intl.aliyuncs.com/compatible-mode/v1'
|
||||
baseUrl === 'https://dashscope-intl.aliyuncs.com/compatible-mode/v1' ||
|
||||
!baseUrl
|
||||
);
|
||||
}
|
||||
|
||||
@@ -144,9 +145,7 @@ export class DashScopeOpenAICompatibleProvider
|
||||
|
||||
getDefaultGenerationConfig(): GenerateContentConfig {
|
||||
return {
|
||||
temperature: 0.7,
|
||||
topP: 0.8,
|
||||
topK: 20,
|
||||
temperature: 0.3,
|
||||
};
|
||||
}
|
||||
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,275 +0,0 @@
|
||||
/**
|
||||
* @license
|
||||
* Copyright 2025 Qwen
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*/
|
||||
|
||||
import type { Config } from '../../config/config.js';
|
||||
import { logApiError, logApiResponse } from '../../telemetry/loggers.js';
|
||||
import { ApiErrorEvent, ApiResponseEvent } from '../../telemetry/types.js';
|
||||
import { OpenAILogger } from '../../utils/openaiLogger.js';
|
||||
import type { GenerateContentResponse } from '@google/genai';
|
||||
import type OpenAI from 'openai';
|
||||
import type { ExtendedCompletionChunkDelta } from './converter.js';
|
||||
|
||||
export interface RequestContext {
|
||||
userPromptId: string;
|
||||
model: string;
|
||||
authType: string;
|
||||
startTime: number;
|
||||
duration: number;
|
||||
isStreaming: boolean;
|
||||
}
|
||||
|
||||
export interface TelemetryService {
|
||||
logSuccess(
|
||||
context: RequestContext,
|
||||
response: GenerateContentResponse,
|
||||
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
|
||||
openaiResponse?: OpenAI.Chat.ChatCompletion,
|
||||
): Promise<void>;
|
||||
|
||||
logError(
|
||||
context: RequestContext,
|
||||
error: unknown,
|
||||
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
|
||||
): Promise<void>;
|
||||
|
||||
logStreamingSuccess(
|
||||
context: RequestContext,
|
||||
responses: GenerateContentResponse[],
|
||||
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
|
||||
openaiChunks?: OpenAI.Chat.ChatCompletionChunk[],
|
||||
): Promise<void>;
|
||||
}
|
||||
|
||||
export class DefaultTelemetryService implements TelemetryService {
|
||||
private logger: OpenAILogger;
|
||||
|
||||
constructor(
|
||||
private config: Config,
|
||||
private enableOpenAILogging: boolean = false,
|
||||
openAILoggingDir?: string,
|
||||
) {
|
||||
// Always create a new logger instance to ensure correct working directory
|
||||
// If no custom directory is provided, undefined will use the default path
|
||||
this.logger = new OpenAILogger(openAILoggingDir);
|
||||
}
|
||||
|
||||
async logSuccess(
|
||||
context: RequestContext,
|
||||
response: GenerateContentResponse,
|
||||
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
|
||||
openaiResponse?: OpenAI.Chat.ChatCompletion,
|
||||
): Promise<void> {
|
||||
// Log API response event for UI telemetry
|
||||
const responseEvent = new ApiResponseEvent(
|
||||
response.responseId || 'unknown',
|
||||
context.model,
|
||||
context.duration,
|
||||
context.userPromptId,
|
||||
context.authType,
|
||||
response.usageMetadata,
|
||||
);
|
||||
|
||||
logApiResponse(this.config, responseEvent);
|
||||
|
||||
// Log interaction if enabled
|
||||
if (this.enableOpenAILogging && openaiRequest && openaiResponse) {
|
||||
await this.logger.logInteraction(openaiRequest, openaiResponse);
|
||||
}
|
||||
}
|
||||
|
||||
async logError(
|
||||
context: RequestContext,
|
||||
error: unknown,
|
||||
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
|
||||
): Promise<void> {
|
||||
const errorMessage = error instanceof Error ? error.message : String(error);
|
||||
|
||||
// Log API error event for UI telemetry
|
||||
const errorEvent = new ApiErrorEvent(
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
(error as any)?.requestID || 'unknown',
|
||||
context.model,
|
||||
errorMessage,
|
||||
context.duration,
|
||||
context.userPromptId,
|
||||
context.authType,
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
(error as any)?.type,
|
||||
// eslint-disable-next-line @typescript-eslint/no-explicit-any
|
||||
(error as any)?.code,
|
||||
);
|
||||
logApiError(this.config, errorEvent);
|
||||
|
||||
// Log error interaction if enabled
|
||||
if (this.enableOpenAILogging && openaiRequest) {
|
||||
await this.logger.logInteraction(
|
||||
openaiRequest,
|
||||
undefined,
|
||||
error as Error,
|
||||
);
|
||||
}
|
||||
}
|
||||
|
||||
async logStreamingSuccess(
|
||||
context: RequestContext,
|
||||
responses: GenerateContentResponse[],
|
||||
openaiRequest?: OpenAI.Chat.ChatCompletionCreateParams,
|
||||
openaiChunks?: OpenAI.Chat.ChatCompletionChunk[],
|
||||
): Promise<void> {
|
||||
// Get final usage metadata from the last response that has it
|
||||
const finalUsageMetadata = responses
|
||||
.slice()
|
||||
.reverse()
|
||||
.find((r) => r.usageMetadata)?.usageMetadata;
|
||||
|
||||
// Log API response event for UI telemetry
|
||||
const responseEvent = new ApiResponseEvent(
|
||||
responses[responses.length - 1]?.responseId || 'unknown',
|
||||
context.model,
|
||||
context.duration,
|
||||
context.userPromptId,
|
||||
context.authType,
|
||||
finalUsageMetadata,
|
||||
);
|
||||
|
||||
logApiResponse(this.config, responseEvent);
|
||||
|
||||
// Log interaction if enabled - combine chunks only when needed
|
||||
if (
|
||||
this.enableOpenAILogging &&
|
||||
openaiRequest &&
|
||||
openaiChunks &&
|
||||
openaiChunks.length > 0
|
||||
) {
|
||||
const combinedResponse = this.combineOpenAIChunksForLogging(openaiChunks);
|
||||
await this.logger.logInteraction(openaiRequest, combinedResponse);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Combine OpenAI chunks for logging purposes
|
||||
* This method consolidates all OpenAI stream chunks into a single ChatCompletion response
|
||||
* for telemetry and logging purposes, avoiding unnecessary format conversions
|
||||
*/
|
||||
private combineOpenAIChunksForLogging(
|
||||
chunks: OpenAI.Chat.ChatCompletionChunk[],
|
||||
): OpenAI.Chat.ChatCompletion {
|
||||
if (chunks.length === 0) {
|
||||
throw new Error('No chunks to combine');
|
||||
}
|
||||
|
||||
const firstChunk = chunks[0];
|
||||
|
||||
// Combine all content from chunks
|
||||
let combinedContent = '';
|
||||
const toolCalls: OpenAI.Chat.ChatCompletionMessageToolCall[] = [];
|
||||
let finishReason:
|
||||
| 'stop'
|
||||
| 'length'
|
||||
| 'tool_calls'
|
||||
| 'content_filter'
|
||||
| 'function_call'
|
||||
| null = null;
|
||||
let combinedReasoning = '';
|
||||
let usage:
|
||||
| {
|
||||
prompt_tokens: number;
|
||||
completion_tokens: number;
|
||||
total_tokens: number;
|
||||
}
|
||||
| undefined;
|
||||
|
||||
for (const chunk of chunks) {
|
||||
const choice = chunk.choices?.[0];
|
||||
if (choice) {
|
||||
// Combine reasoning content
|
||||
const reasoningContent = (choice.delta as ExtendedCompletionChunkDelta)
|
||||
?.reasoning_content;
|
||||
if (reasoningContent) {
|
||||
combinedReasoning += reasoningContent;
|
||||
}
|
||||
// Combine text content
|
||||
if (choice.delta?.content) {
|
||||
combinedContent += choice.delta.content;
|
||||
}
|
||||
|
||||
// Collect tool calls
|
||||
if (choice.delta?.tool_calls) {
|
||||
for (const toolCall of choice.delta.tool_calls) {
|
||||
if (toolCall.index !== undefined) {
|
||||
if (!toolCalls[toolCall.index]) {
|
||||
toolCalls[toolCall.index] = {
|
||||
id: toolCall.id || '',
|
||||
type: toolCall.type || 'function',
|
||||
function: { name: '', arguments: '' },
|
||||
};
|
||||
}
|
||||
|
||||
if (toolCall.function?.name) {
|
||||
toolCalls[toolCall.index].function.name +=
|
||||
toolCall.function.name;
|
||||
}
|
||||
if (toolCall.function?.arguments) {
|
||||
toolCalls[toolCall.index].function.arguments +=
|
||||
toolCall.function.arguments;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Get finish reason from the last chunk
|
||||
if (choice.finish_reason) {
|
||||
finishReason = choice.finish_reason;
|
||||
}
|
||||
}
|
||||
|
||||
// Get usage from the last chunk that has it
|
||||
if (chunk.usage) {
|
||||
usage = chunk.usage;
|
||||
}
|
||||
}
|
||||
|
||||
// Create the combined ChatCompletion response
|
||||
const message: OpenAI.Chat.ChatCompletionMessage = {
|
||||
role: 'assistant',
|
||||
content: combinedContent || null,
|
||||
refusal: null,
|
||||
};
|
||||
if (combinedReasoning) {
|
||||
// Attach reasoning content if any thought tokens were streamed
|
||||
(message as { reasoning_content?: string }).reasoning_content =
|
||||
combinedReasoning;
|
||||
}
|
||||
|
||||
// Add tool calls if any
|
||||
if (toolCalls.length > 0) {
|
||||
message.tool_calls = toolCalls.filter((tc) => tc.id); // Filter out empty tool calls
|
||||
}
|
||||
|
||||
const combinedResponse: OpenAI.Chat.ChatCompletion = {
|
||||
id: firstChunk.id,
|
||||
object: 'chat.completion',
|
||||
created: firstChunk.created,
|
||||
model: firstChunk.model,
|
||||
choices: [
|
||||
{
|
||||
index: 0,
|
||||
message,
|
||||
finish_reason: finishReason || 'stop',
|
||||
logprobs: null,
|
||||
},
|
||||
],
|
||||
usage: usage || {
|
||||
prompt_tokens: 0,
|
||||
completion_tokens: 0,
|
||||
total_tokens: 0,
|
||||
},
|
||||
system_fingerprint: firstChunk.system_fingerprint,
|
||||
};
|
||||
|
||||
return combinedResponse;
|
||||
}
|
||||
}
|
||||
@@ -264,7 +264,7 @@ describe('loggers', () => {
|
||||
'event.timestamp': '2025-01-01T00:00:00.000Z',
|
||||
prompt_length: 11,
|
||||
prompt_id: 'prompt-id-9',
|
||||
auth_type: 'gemini-api-key',
|
||||
auth_type: 'gemini',
|
||||
},
|
||||
});
|
||||
});
|
||||
@@ -333,7 +333,7 @@ describe('loggers', () => {
|
||||
total_token_count: 0,
|
||||
response_text: 'test-response',
|
||||
prompt_id: 'prompt-id-1',
|
||||
auth_type: 'gemini-api-key',
|
||||
auth_type: 'gemini',
|
||||
},
|
||||
});
|
||||
|
||||
|
||||
Reference in New Issue
Block a user