Compare commits

...

3 Commits

Author SHA1 Message Date
tanzhenxin
b9a0d904de feat: add multi-modal input support (image, PDF, audio) across all content generators 2026-01-21 15:44:58 +08:00
Mingholy
6eb16c0bcf Merge pull request #1548 from QwenLM/mingholy/fix/qwen-oauth-model-info
Fix: Update Qwen OAuth model information
2026-01-20 16:16:30 +08:00
mingholy.lmh
03f12bfa3f fix: update qwen-oauth models info 2026-01-20 15:11:11 +08:00
19 changed files with 1108 additions and 434 deletions

2
.gitignore vendored
View File

@@ -12,7 +12,7 @@
!.gemini/config.yaml
!.gemini/commands/
# Note: .gemini-clipboard/ is NOT in gitignore so Gemini can access pasted images
# Note: .qwen-clipboard/ is NOT in gitignore so Gemini can access pasted images
# Dependency directory
node_modules

View File

@@ -376,7 +376,7 @@ describe('InputPrompt', () => {
it('should handle Ctrl+V when clipboard has an image', async () => {
vi.mocked(clipboardUtils.clipboardHasImage).mockResolvedValue(true);
vi.mocked(clipboardUtils.saveClipboardImage).mockResolvedValue(
'/test/.gemini-clipboard/clipboard-123.png',
'/test/.qwen-clipboard/clipboard-123.png',
);
const { stdin, unmount } = renderWithProviders(
@@ -436,7 +436,7 @@ describe('InputPrompt', () => {
it('should insert image path at cursor position with proper spacing', async () => {
const imagePath = path.join(
'test',
'.gemini-clipboard',
'.qwen-clipboard',
'clipboard-456.png',
);
vi.mocked(clipboardUtils.clipboardHasImage).mockResolvedValue(true);

View File

@@ -44,7 +44,7 @@ export async function saveClipboardImage(
// Create a temporary directory for clipboard images within the target directory
// This avoids security restrictions on paths outside the target directory
const baseDir = targetDir || process.cwd();
const tempDir = path.join(baseDir, '.gemini-clipboard');
const tempDir = path.join(baseDir, '.qwen-clipboard');
await fs.mkdir(tempDir, { recursive: true });
// Generate a unique filename with timestamp
@@ -120,7 +120,7 @@ export async function cleanupOldClipboardImages(
): Promise<void> {
try {
const baseDir = targetDir || process.cwd();
const tempDir = path.join(baseDir, '.gemini-clipboard');
const tempDir = path.join(baseDir, '.qwen-clipboard');
const files = await fs.readdir(tempDir);
const oneHourAgo = Date.now() - 60 * 60 * 1000;

View File

@@ -208,6 +208,238 @@ describe('AnthropicContentConverter', () => {
],
});
});
it('converts function response with inlineData image parts into tool_result with images', () => {
const { messages } = converter.convertGeminiRequestToAnthropic({
model: 'models/test',
contents: [
{
role: 'user',
parts: [
{
functionResponse: {
id: 'call-1',
name: 'Read',
response: { output: 'Image content' },
parts: [
{
inlineData: {
mimeType: 'image/png',
data: 'base64encodeddata',
},
},
],
},
},
],
},
],
});
expect(messages).toEqual([
{
role: 'user',
content: [
{
type: 'tool_result',
tool_use_id: 'call-1',
content: [
{ type: 'text', text: 'Image content' },
{
type: 'image',
source: {
type: 'base64',
media_type: 'image/png',
data: 'base64encodeddata',
},
},
],
},
],
},
]);
});
it('renders non-image inlineData as a text block (avoids invalid image media_type)', () => {
const { messages } = converter.convertGeminiRequestToAnthropic({
model: 'models/test',
contents: [
{
role: 'user',
parts: [
{
functionResponse: {
id: 'call-1',
name: 'Read',
response: { output: 'Audio content' },
parts: [
{
inlineData: {
mimeType: 'audio/mpeg',
data: 'base64encodedaudiodata',
},
},
],
},
},
],
},
],
});
expect(messages).toHaveLength(1);
expect(messages[0]?.role).toBe('user');
const toolResult = messages[0]?.content?.[0] as {
type: string;
content: Array<{ type: string; text?: string }>;
};
expect(toolResult.type).toBe('tool_result');
expect(Array.isArray(toolResult.content)).toBe(true);
expect(toolResult.content[0]).toEqual({
type: 'text',
text: 'Audio content',
});
expect(toolResult.content[1]?.type).toBe('text');
expect(toolResult.content[1]?.text).toContain(
'Unsupported inline media type for Anthropic',
);
expect(toolResult.content[1]?.text).toContain('audio/mpeg');
});
it('converts fileData with PDF into document block', () => {
const { messages } = converter.convertGeminiRequestToAnthropic({
model: 'models/test',
contents: [
{
role: 'user',
parts: [
{
functionResponse: {
id: 'call-1',
name: 'Read',
response: { output: 'PDF content' },
parts: [
{
fileData: {
mimeType: 'application/pdf',
fileUri: 'pdfbase64data',
},
},
],
},
},
],
},
],
});
expect(messages).toEqual([
{
role: 'user',
content: [
{
type: 'tool_result',
tool_use_id: 'call-1',
content: [
{ type: 'text', text: 'PDF content' },
{
type: 'document',
source: {
type: 'base64',
media_type: 'application/pdf',
data: 'pdfbase64data',
},
},
],
},
],
},
]);
});
it('associates each image with its preceding functionResponse', () => {
const { messages } = converter.convertGeminiRequestToAnthropic({
model: 'models/test',
contents: [
{
role: 'user',
parts: [
// Tool 1 with image 1
{
functionResponse: {
id: 'call-1',
name: 'Read',
response: { output: 'File 1' },
parts: [
{
inlineData: {
mimeType: 'image/png',
data: 'image1data',
},
},
],
},
},
// Tool 2 with image 2
{
functionResponse: {
id: 'call-2',
name: 'Read',
response: { output: 'File 2' },
parts: [
{
inlineData: {
mimeType: 'image/jpeg',
data: 'image2data',
},
},
],
},
},
],
},
],
});
// Multiple tool_result blocks are emitted in order
expect(messages).toHaveLength(1);
expect(messages[0]).toEqual({
role: 'user',
content: [
{
type: 'tool_result',
tool_use_id: 'call-1',
content: [
{ type: 'text', text: 'File 1' },
{
type: 'image',
source: {
type: 'base64',
media_type: 'image/png',
data: 'image1data',
},
},
],
},
{
type: 'tool_result',
tool_use_id: 'call-2',
content: [
{ type: 'text', text: 'File 2' },
{
type: 'image',
source: {
type: 'base64',
media_type: 'image/jpeg',
data: 'image2data',
},
},
],
},
],
});
});
});
describe('convertGeminiToolsToAnthropic', () => {

View File

@@ -10,7 +10,6 @@ import type {
Content,
ContentListUnion,
ContentUnion,
FunctionCall,
FunctionResponse,
GenerateContentParameters,
Part,
@@ -30,15 +29,6 @@ type AnthropicMessageParam = Anthropic.MessageParam;
type AnthropicToolParam = Anthropic.Tool;
type AnthropicContentBlockParam = Anthropic.ContentBlockParam;
type ThoughtPart = { text: string; signature?: string };
interface ParsedParts {
thoughtParts: ThoughtPart[];
contentParts: string[];
functionCalls: FunctionCall[];
functionResponses: FunctionResponse[];
}
export class AnthropicContentConverter {
private model: string;
private schemaCompliance: SchemaComplianceMode;
@@ -228,127 +218,161 @@ export class AnthropicContentConverter {
}
if (!this.isContentObject(content)) return;
const parsed = this.parseParts(content.parts || []);
if (parsed.functionResponses.length > 0) {
for (const response of parsed.functionResponses) {
messages.push({
role: 'user',
content: [
{
type: 'tool_result',
tool_use_id: response.id || '',
content: this.extractFunctionResponseContent(response.response),
},
],
});
}
return;
}
if (content.role === 'model' && parsed.functionCalls.length > 0) {
const thinkingBlocks: AnthropicContentBlockParam[] =
parsed.thoughtParts.map((part) => {
const thinkingBlock: unknown = {
type: 'thinking',
thinking: part.text,
};
if (part.signature) {
(thinkingBlock as { signature?: string }).signature =
part.signature;
}
return thinkingBlock as AnthropicContentBlockParam;
});
const toolUses: AnthropicContentBlockParam[] = parsed.functionCalls.map(
(call, index) => ({
type: 'tool_use',
id: call.id || `tool_${index}`,
name: call.name || '',
input: (call.args as Record<string, unknown>) || {},
}),
);
const textBlocks: AnthropicContentBlockParam[] = parsed.contentParts.map(
(text) => ({
type: 'text' as const,
text,
}),
);
messages.push({
role: 'assistant',
content: [...thinkingBlocks, ...textBlocks, ...toolUses],
});
return;
}
const parts = content.parts || [];
const role = content.role === 'model' ? 'assistant' : 'user';
const thinkingBlocks: AnthropicContentBlockParam[] =
role === 'assistant'
? parsed.thoughtParts.map((part) => {
const thinkingBlock: unknown = {
type: 'thinking',
thinking: part.text,
};
if (part.signature) {
(thinkingBlock as { signature?: string }).signature =
part.signature;
}
return thinkingBlock as AnthropicContentBlockParam;
})
: [];
const textBlocks: AnthropicContentBlockParam[] = [
...thinkingBlocks,
...parsed.contentParts.map((text) => ({
type: 'text' as const,
text,
})),
];
if (textBlocks.length > 0) {
messages.push({ role, content: textBlocks });
}
}
private parseParts(parts: Part[]): ParsedParts {
const thoughtParts: ThoughtPart[] = [];
const contentParts: string[] = [];
const functionCalls: FunctionCall[] = [];
const functionResponses: FunctionResponse[] = [];
const contentBlocks: AnthropicContentBlockParam[] = [];
let toolCallIndex = 0;
for (const part of parts) {
if (typeof part === 'string') {
contentParts.push(part);
} else if (
'text' in part &&
part.text &&
!('thought' in part && part.thought)
) {
contentParts.push(part.text);
} else if ('text' in part && 'thought' in part && part.thought) {
thoughtParts.push({
text: part.text || '',
signature:
contentBlocks.push({ type: 'text', text: part });
continue;
}
if ('text' in part && 'thought' in part && part.thought) {
if (role === 'assistant') {
const thinkingBlock: unknown = {
type: 'thinking',
thinking: part.text || '',
};
if (
'thoughtSignature' in part &&
typeof part.thoughtSignature === 'string'
? part.thoughtSignature
: undefined,
});
} else if ('functionCall' in part && part.functionCall) {
functionCalls.push(part.functionCall);
} else if ('functionResponse' in part && part.functionResponse) {
functionResponses.push(part.functionResponse);
) {
(thinkingBlock as { signature?: string }).signature =
part.thoughtSignature;
}
contentBlocks.push(thinkingBlock as AnthropicContentBlockParam);
}
}
if ('text' in part && part.text && !('thought' in part && part.thought)) {
contentBlocks.push({ type: 'text', text: part.text });
}
const mediaBlock = this.createMediaBlockFromPart(part);
if (mediaBlock) {
contentBlocks.push(mediaBlock);
}
if ('functionCall' in part && part.functionCall) {
if (role === 'assistant') {
contentBlocks.push({
type: 'tool_use',
id: part.functionCall.id || `tool_${toolCallIndex}`,
name: part.functionCall.name || '',
input: (part.functionCall.args as Record<string, unknown>) || {},
});
toolCallIndex += 1;
}
}
if (part.functionResponse) {
const toolResultBlock = this.createToolResultBlock(
part.functionResponse,
);
if (toolResultBlock && role === 'user') {
contentBlocks.push(toolResultBlock);
}
}
}
if (contentBlocks.length > 0) {
messages.push({ role, content: contentBlocks });
}
}
private createToolResultBlock(
response: FunctionResponse,
): Anthropic.ToolResultBlockParam | null {
const textContent = this.extractFunctionResponseContent(response.response);
type ToolResultContent = Anthropic.ToolResultBlockParam['content'];
const partBlocks: AnthropicContentBlockParam[] = [];
for (const part of response.parts || []) {
const block = this.createMediaBlockFromPart(part);
if (block) {
partBlocks.push(block);
}
}
let content: ToolResultContent;
if (partBlocks.length > 0) {
const blocks: AnthropicContentBlockParam[] = [];
if (textContent) {
blocks.push({ type: 'text', text: textContent });
}
blocks.push(...partBlocks);
content = blocks as unknown as ToolResultContent;
} else {
content = textContent;
}
return {
thoughtParts,
contentParts,
functionCalls,
functionResponses,
type: 'tool_result',
tool_use_id: response.id || '',
content,
};
}
private createMediaBlockFromPart(
part: Part,
): AnthropicContentBlockParam | null {
if (part.inlineData?.mimeType && part.inlineData?.data) {
if (!this.isSupportedAnthropicImageMimeType(part.inlineData.mimeType)) {
const displayName = part.inlineData.displayName ?? '';
return {
type: 'text',
text: `Unsupported inline media type for Anthropic: ${part.inlineData.mimeType}${displayName}.`,
};
}
return {
type: 'image',
source: {
type: 'base64',
media_type: part.inlineData.mimeType as
| 'image/jpeg'
| 'image/png'
| 'image/gif'
| 'image/webp',
data: part.inlineData.data,
},
};
}
if (part.fileData?.mimeType && part.fileData?.fileUri) {
if (part.fileData.mimeType !== 'application/pdf') {
const displayName = part.fileData.displayName ?? '';
return {
type: 'text',
text: `Unsupported file media for Anthropic: ${part.fileData.mimeType}${displayName}`,
};
}
return {
type: 'document',
source: {
type: 'base64',
media_type: part.fileData.mimeType as 'application/pdf',
data: part.fileData.fileUri,
},
};
}
return null;
}
private isSupportedAnthropicImageMimeType(
mimeType: string,
): mimeType is 'image/jpeg' | 'image/png' | 'image/gif' | 'image/webp' {
return (
mimeType === 'image/jpeg' ||
mimeType === 'image/png' ||
mimeType === 'image/gif' ||
mimeType === 'image/webp'
);
}
private extractTextFromContentUnion(contentUnion: unknown): string {
if (typeof contentUnion === 'string') {
return contentUnion;

View File

@@ -800,11 +800,11 @@ describe('convertToFunctionResponse', () => {
name: toolName,
id: callId,
response: {
output: 'Binary content of type image/png was processed.',
output: '',
},
parts: [{ inlineData: { mimeType: 'image/png', data: 'base64...' } }],
},
},
llmContent,
]);
});
@@ -819,11 +819,15 @@ describe('convertToFunctionResponse', () => {
name: toolName,
id: callId,
response: {
output: 'Binary content of type application/pdf was processed.',
output: '',
},
parts: [
{
fileData: { mimeType: 'application/pdf', fileUri: 'gs://...' },
},
],
},
},
llmContent,
]);
});
@@ -857,11 +861,13 @@ describe('convertToFunctionResponse', () => {
name: toolName,
id: callId,
response: {
output: 'Binary content of type image/gif was processed.',
output: '',
},
parts: [
{ inlineData: { mimeType: 'image/gif', data: 'gifdata...' } },
],
},
},
...llmContent,
]);
});

View File

@@ -30,7 +30,12 @@ import {
ToolOutputTruncatedEvent,
InputFormat,
} from '../index.js';
import type { Part, PartListUnion } from '@google/genai';
import type {
FunctionResponse,
FunctionResponsePart,
Part,
PartListUnion,
} from '@google/genai';
import { getResponseTextFromParts } from '../utils/generateContentResponseUtilities.js';
import type { ModifyContext } from '../tools/modifiable-tool.js';
import {
@@ -151,13 +156,17 @@ function createFunctionResponsePart(
callId: string,
toolName: string,
output: string,
mediaParts?: FunctionResponsePart[],
): Part {
const functionResponse: FunctionResponse = {
id: callId,
name: toolName,
response: { output },
...(mediaParts && mediaParts.length > 0 ? { parts: mediaParts } : {}),
};
return {
functionResponse: {
id: callId,
name: toolName,
response: { output },
},
functionResponse,
};
}
@@ -198,16 +207,21 @@ export function convertToFunctionResponse(
}
if (contentToProcess.inlineData || contentToProcess.fileData) {
const mimeType =
contentToProcess.inlineData?.mimeType ||
contentToProcess.fileData?.mimeType ||
'unknown';
const mediaParts: FunctionResponsePart[] = [];
if (contentToProcess.inlineData) {
mediaParts.push({ inlineData: contentToProcess.inlineData });
}
if (contentToProcess.fileData) {
mediaParts.push({ fileData: contentToProcess.fileData });
}
const functionResponse = createFunctionResponsePart(
callId,
toolName,
`Binary content of type ${mimeType} was processed.`,
'',
mediaParts,
);
return [functionResponse, contentToProcess];
return [functionResponse];
}
if (contentToProcess.text !== undefined) {

View File

@@ -309,11 +309,13 @@ describe('executeToolCall', () => {
name: 'testTool',
id: 'call6',
response: {
output: 'Binary content of type image/png was processed.',
output: '',
},
parts: [
{ inlineData: { mimeType: 'image/png', data: 'base64data' } },
],
},
},
imageDataPart,
],
});
});

View File

@@ -122,7 +122,13 @@ describe('OpenAIContentConverter', () => {
const toolMessage = messages.find((message) => message.role === 'tool');
expect(toolMessage).toBeDefined();
expect(toolMessage?.content).toBe('Raw output text');
expect(Array.isArray(toolMessage?.content)).toBe(true);
const contentArray = toolMessage?.content as Array<{
type: string;
text?: string;
}>;
expect(contentArray[0].type).toBe('text');
expect(contentArray[0].text).toBe('Raw output text');
});
it('should prioritize error field when present', () => {
@@ -134,7 +140,13 @@ describe('OpenAIContentConverter', () => {
const toolMessage = messages.find((message) => message.role === 'tool');
expect(toolMessage).toBeDefined();
expect(toolMessage?.content).toBe('Command failed');
expect(Array.isArray(toolMessage?.content)).toBe(true);
const contentArray = toolMessage?.content as Array<{
type: string;
text?: string;
}>;
expect(contentArray[0].type).toBe('text');
expect(contentArray[0].text).toBe('Command failed');
});
it('should stringify non-string responses', () => {
@@ -146,7 +158,318 @@ describe('OpenAIContentConverter', () => {
const toolMessage = messages.find((message) => message.role === 'tool');
expect(toolMessage).toBeDefined();
expect(toolMessage?.content).toBe('{"data":{"value":42}}');
expect(Array.isArray(toolMessage?.content)).toBe(true);
const contentArray = toolMessage?.content as Array<{
type: string;
text?: string;
}>;
expect(contentArray[0].type).toBe('text');
expect(contentArray[0].text).toBe('{"data":{"value":42}}');
});
it('should convert function responses with inlineData to tool message with embedded image_url', () => {
const request: GenerateContentParameters = {
model: 'models/test',
contents: [
{
role: 'model',
parts: [
{
functionCall: {
id: 'call_1',
name: 'Read',
args: {},
},
},
],
},
{
role: 'user',
parts: [
{
functionResponse: {
id: 'call_1',
name: 'Read',
response: { output: 'Image content' },
parts: [
{
inlineData: {
mimeType: 'image/png',
data: 'base64encodedimagedata',
},
},
],
},
},
],
},
],
};
const messages = converter.convertGeminiRequestToOpenAI(request);
// Should have tool message with both text and image content
const toolMessage = messages.find((message) => message.role === 'tool');
expect(toolMessage).toBeDefined();
expect((toolMessage as { tool_call_id?: string }).tool_call_id).toBe(
'call_1',
);
expect(Array.isArray(toolMessage?.content)).toBe(true);
const contentArray = toolMessage?.content as Array<{
type: string;
text?: string;
image_url?: { url: string };
}>;
expect(contentArray).toHaveLength(2);
expect(contentArray[0].type).toBe('text');
expect(contentArray[0].text).toBe('Image content');
expect(contentArray[1].type).toBe('image_url');
expect(contentArray[1].image_url?.url).toBe(
'',
);
// No separate user message should be created
const userMessage = messages.find((message) => message.role === 'user');
expect(userMessage).toBeUndefined();
});
it('should convert function responses with fileData to tool message with embedded input_file', () => {
const request: GenerateContentParameters = {
model: 'models/test',
contents: [
{
role: 'model',
parts: [
{
functionCall: {
id: 'call_1',
name: 'Read',
args: {},
},
},
],
},
{
role: 'user',
parts: [
{
functionResponse: {
id: 'call_1',
name: 'Read',
response: { output: 'File content' },
parts: [
{
fileData: {
mimeType: 'image/jpeg',
fileUri: 'base64imagedata',
},
},
],
},
},
],
},
],
};
const messages = converter.convertGeminiRequestToOpenAI(request);
// Should have tool message with both text and file content
const toolMessage = messages.find((message) => message.role === 'tool');
expect(toolMessage).toBeDefined();
expect(Array.isArray(toolMessage?.content)).toBe(true);
const contentArray = toolMessage?.content as Array<{
type: string;
text?: string;
file?: { filename: string; file_data: string };
}>;
expect(contentArray).toHaveLength(2);
expect(contentArray[0].type).toBe('text');
expect(contentArray[0].text).toBe('File content');
expect(contentArray[1].type).toBe('file');
expect(contentArray[1].file?.filename).toBe('file'); // Default filename when displayName not provided
expect(contentArray[1].file?.file_data).toBe(
'',
);
// No separate user message should be created
const userMessage = messages.find((message) => message.role === 'user');
expect(userMessage).toBeUndefined();
});
it('should convert PDF fileData to tool message with embedded input_file', () => {
const request: GenerateContentParameters = {
model: 'models/test',
contents: [
{
role: 'model',
parts: [
{
functionCall: {
id: 'call_1',
name: 'Read',
args: {},
},
},
],
},
{
role: 'user',
parts: [
{
functionResponse: {
id: 'call_1',
name: 'Read',
response: { output: 'PDF content' },
parts: [
{
fileData: {
mimeType: 'application/pdf',
fileUri: 'base64pdfdata',
displayName: 'document.pdf',
},
},
],
},
},
],
},
],
};
const messages = converter.convertGeminiRequestToOpenAI(request);
// Should have tool message with both text and file content
const toolMessage = messages.find((message) => message.role === 'tool');
expect(toolMessage).toBeDefined();
expect(Array.isArray(toolMessage?.content)).toBe(true);
const contentArray = toolMessage?.content as Array<{
type: string;
text?: string;
file?: { filename: string; file_data: string };
}>;
expect(contentArray).toHaveLength(2);
expect(contentArray[0].type).toBe('text');
expect(contentArray[0].text).toBe('PDF content');
expect(contentArray[1].type).toBe('file');
expect(contentArray[1].file?.filename).toBe('document.pdf');
expect(contentArray[1].file?.file_data).toBe(
'data:application/pdf;base64,base64pdfdata',
);
// No separate user message should be created
const userMessage = messages.find((message) => message.role === 'user');
expect(userMessage).toBeUndefined();
});
it('should convert audio parts to tool message with embedded input_audio', () => {
const request: GenerateContentParameters = {
model: 'models/test',
contents: [
{
role: 'model',
parts: [
{
functionCall: {
id: 'call_1',
name: 'Record',
args: {},
},
},
],
},
{
role: 'user',
parts: [
{
functionResponse: {
id: 'call_1',
name: 'Record',
response: { output: 'Audio recorded' },
parts: [
{
inlineData: {
mimeType: 'audio/wav',
data: 'audiobase64data',
},
},
],
},
},
],
},
],
};
const messages = converter.convertGeminiRequestToOpenAI(request);
// Should have tool message with both text and audio content
const toolMessage = messages.find((message) => message.role === 'tool');
expect(toolMessage).toBeDefined();
expect(Array.isArray(toolMessage?.content)).toBe(true);
const contentArray = toolMessage?.content as Array<{
type: string;
text?: string;
input_audio?: { data: string; format: string };
}>;
expect(contentArray).toHaveLength(2);
expect(contentArray[0].type).toBe('text');
expect(contentArray[0].text).toBe('Audio recorded');
expect(contentArray[1].type).toBe('input_audio');
expect(contentArray[1].input_audio?.data).toBe('audiobase64data');
expect(contentArray[1].input_audio?.format).toBe('wav');
// No separate user message should be created
const userMessage = messages.find((message) => message.role === 'user');
expect(userMessage).toBeUndefined();
});
it('should create tool message with text-only content when no media parts', () => {
const request = createRequestWithFunctionResponse({
output: 'Plain text output',
});
const messages = converter.convertGeminiRequestToOpenAI(request);
const toolMessage = messages.find((message) => message.role === 'tool');
expect(toolMessage).toBeDefined();
expect(Array.isArray(toolMessage?.content)).toBe(true);
const contentArray = toolMessage?.content as Array<{
type: string;
text?: string;
}>;
expect(contentArray).toHaveLength(1);
expect(contentArray[0].type).toBe('text');
expect(contentArray[0].text).toBe('Plain text output');
// No user message should be created when there's no media
const userMessage = messages.find((message) => message.role === 'user');
expect(userMessage).toBeUndefined();
});
it('should skip empty function responses with no media and no text', () => {
const request: GenerateContentParameters = {
model: 'models/test',
contents: [
{
role: 'user',
parts: [
{
functionResponse: {
id: 'call_1',
name: 'Empty',
response: { output: '' },
},
},
],
},
],
};
const messages = converter.convertGeminiRequestToOpenAI(request);
// Should have no messages for empty response
expect(messages).toHaveLength(0);
});
});
@@ -180,6 +503,35 @@ describe('OpenAIContentConverter', () => {
);
});
it('should convert reasoning to a thought part for non-streaming responses', () => {
const response = converter.convertOpenAIResponseToGemini({
object: 'chat.completion',
id: 'chatcmpl-2',
created: 123,
model: 'gpt-test',
choices: [
{
index: 0,
message: {
role: 'assistant',
content: 'final answer',
reasoning: 'chain-of-thought',
},
finish_reason: 'stop',
logprobs: null,
},
],
} as unknown as OpenAI.Chat.ChatCompletion);
const parts = response.candidates?.[0]?.content?.parts;
expect(parts?.[0]).toEqual(
expect.objectContaining({ thought: true, text: 'chain-of-thought' }),
);
expect(parts?.[1]).toEqual(
expect.objectContaining({ text: 'final answer' }),
);
});
it('should convert streaming reasoning_content delta to a thought part', () => {
const chunk = converter.convertOpenAIChunkToGemini({
object: 'chat.completion.chunk',
@@ -208,6 +560,34 @@ describe('OpenAIContentConverter', () => {
);
});
it('should convert streaming reasoning delta to a thought part', () => {
const chunk = converter.convertOpenAIChunkToGemini({
object: 'chat.completion.chunk',
id: 'chunk-1b',
created: 456,
choices: [
{
index: 0,
delta: {
content: 'visible text',
reasoning: 'thinking...',
},
finish_reason: 'stop',
logprobs: null,
},
],
model: 'gpt-test',
} as unknown as OpenAI.Chat.ChatCompletionChunk);
const parts = chunk.candidates?.[0]?.content?.parts;
expect(parts?.[0]).toEqual(
expect.objectContaining({ thought: true, text: 'thinking...' }),
);
expect(parts?.[1]).toEqual(
expect.objectContaining({ text: 'visible text' }),
);
});
it('should not throw when streaming chunk has no delta', () => {
const chunk = converter.convertOpenAIChunkToGemini({
object: 'chat.completion.chunk',
@@ -584,11 +964,7 @@ describe('OpenAIContentConverter', () => {
expect(messages).toHaveLength(1);
expect(messages[0].role).toBe('assistant');
const content = messages[0]
.content as OpenAI.Chat.ChatCompletionContentPart[];
expect(content).toHaveLength(2);
expect(content[0]).toEqual({ type: 'text', text: 'First part' });
expect(content[1]).toEqual({ type: 'text', text: 'Second part' });
expect(messages[0].content).toBe('First partSecond part');
});
it('should merge multiple consecutive assistant messages', () => {
@@ -614,9 +990,7 @@ describe('OpenAIContentConverter', () => {
expect(messages).toHaveLength(1);
expect(messages[0].role).toBe('assistant');
const content = messages[0]
.content as OpenAI.Chat.ChatCompletionContentPart[];
expect(content).toHaveLength(3);
expect(messages[0].content).toBe('Part 1Part 2Part 3');
});
it('should merge tool_calls from consecutive assistant messages', () => {
@@ -674,7 +1048,9 @@ describe('OpenAIContentConverter', () => {
],
};
const messages = converter.convertGeminiRequestToOpenAI(request);
const messages = converter.convertGeminiRequestToOpenAI(request, {
cleanOrphanToolCalls: false,
});
// Should have: assistant (tool_call_1), tool (result_1), assistant (tool_call_2), tool (result_2)
expect(messages).toHaveLength(4);
@@ -729,10 +1105,7 @@ describe('OpenAIContentConverter', () => {
const messages = converter.convertGeminiRequestToOpenAI(request);
expect(messages).toHaveLength(1);
const content = messages[0]
.content as OpenAI.Chat.ChatCompletionContentPart[];
expect(Array.isArray(content)).toBe(true);
expect(content).toHaveLength(2);
expect(messages[0].content).toBe('Text partAnother text');
});
it('should merge empty content correctly', () => {
@@ -758,11 +1131,7 @@ describe('OpenAIContentConverter', () => {
// Empty messages should be filtered out
expect(messages).toHaveLength(1);
const content = messages[0]
.content as OpenAI.Chat.ChatCompletionContentPart[];
expect(content).toHaveLength(2);
expect(content[0]).toEqual({ type: 'text', text: 'First' });
expect(content[1]).toEqual({ type: 'text', text: 'Second' });
expect(messages[0].content).toBe('FirstSecond');
});
});
});

View File

@@ -11,7 +11,6 @@ import type {
Tool,
ToolListUnion,
CallableTool,
FunctionCall,
FunctionResponse,
ContentListUnion,
ContentUnion,
@@ -47,11 +46,13 @@ type ExtendedChatCompletionMessageParam =
export interface ExtendedCompletionMessage
extends OpenAI.Chat.ChatCompletionMessage {
reasoning_content?: string | null;
reasoning?: string | null;
}
export interface ExtendedCompletionChunkDelta
extends OpenAI.Chat.ChatCompletionChunk.Choice.Delta {
reasoning_content?: string | null;
reasoning?: string | null;
}
/**
@@ -63,21 +64,17 @@ export interface ToolCallAccumulator {
arguments: string;
}
/**
* Parsed parts from Gemini content, categorized by type
*/
interface ParsedParts {
thoughtParts: string[];
contentParts: string[];
functionCalls: FunctionCall[];
functionResponses: FunctionResponse[];
mediaParts: Array<{
type: 'image' | 'audio' | 'file';
data: string;
mimeType: string;
fileUri?: string;
}>;
}
type OpenAIContentPart =
| OpenAI.Chat.ChatCompletionContentPartText
| OpenAI.Chat.ChatCompletionContentPartImage
| OpenAI.Chat.ChatCompletionContentPartInputAudio
| {
type: 'file';
file: {
filename: string;
file_data: string;
};
};
/**
* Converter class for transforming data between Gemini and OpenAI formats
@@ -271,28 +268,48 @@ export class OpenAIContentConverter {
): OpenAI.Chat.ChatCompletion {
const candidate = response.candidates?.[0];
const parts = (candidate?.content?.parts || []) as Part[];
const parsedParts = this.parseParts(parts);
// Parse parts inline
const thoughtParts: string[] = [];
const contentParts: string[] = [];
const toolCalls: OpenAI.Chat.ChatCompletionMessageToolCall[] = [];
let toolCallIndex = 0;
for (const part of parts) {
if (typeof part === 'string') {
contentParts.push(part);
} else if ('text' in part && part.text) {
if ('thought' in part && part.thought) {
thoughtParts.push(part.text);
} else {
contentParts.push(part.text);
}
} else if ('functionCall' in part && part.functionCall) {
toolCalls.push({
id: part.functionCall.id || `call_${toolCallIndex}`,
type: 'function' as const,
function: {
name: part.functionCall.name || '',
arguments: JSON.stringify(part.functionCall.args || {}),
},
});
toolCallIndex += 1;
}
}
const message: ExtendedCompletionMessage = {
role: 'assistant',
content: parsedParts.contentParts.join('') || null,
content: contentParts.join('') || null,
refusal: null,
};
const reasoningContent = parsedParts.thoughtParts.join('');
const reasoningContent = thoughtParts.join('');
if (reasoningContent) {
message.reasoning_content = reasoningContent;
}
if (parsedParts.functionCalls.length > 0) {
message.tool_calls = parsedParts.functionCalls.map((call, index) => ({
id: call.id || `call_${index}`,
type: 'function' as const,
function: {
name: call.name || '',
arguments: JSON.stringify(call.args || {}),
},
}));
if (toolCalls.length > 0) {
message.tool_calls = toolCalls;
}
const finishReason = this.mapGeminiFinishReasonToOpenAI(
@@ -390,40 +407,82 @@ export class OpenAIContentConverter {
}
if (!this.isContentObject(content)) return;
const parts = content.parts || [];
const role = content.role === 'model' ? 'assistant' : 'user';
const parsedParts = this.parseParts(content.parts || []);
const contentParts: OpenAIContentPart[] = [];
const reasoningParts: string[] = [];
const toolCalls: OpenAI.Chat.ChatCompletionMessageToolCall[] = [];
let toolCallIndex = 0;
// Handle function responses (tool results) first
if (parsedParts.functionResponses.length > 0) {
for (const funcResponse of parsedParts.functionResponses) {
messages.push({
role: 'tool' as const,
tool_call_id: funcResponse.id || '',
content: this.extractFunctionResponseContent(funcResponse.response),
});
for (const part of parts) {
if (typeof part === 'string') {
contentParts.push({ type: 'text' as const, text: part });
continue;
}
if ('text' in part && 'thought' in part && part.thought) {
if (role === 'assistant' && part.text) {
reasoningParts.push(part.text);
}
}
if ('text' in part && part.text && !('thought' in part && part.thought)) {
contentParts.push({ type: 'text' as const, text: part.text });
}
const mediaPart = this.createMediaContentPart(part);
if (mediaPart && role === 'user') {
contentParts.push(mediaPart);
}
if ('functionCall' in part && part.functionCall && role === 'assistant') {
toolCalls.push({
id: part.functionCall.id || `call_${toolCallIndex}`,
type: 'function' as const,
function: {
name: part.functionCall.name || '',
arguments: JSON.stringify(part.functionCall.args || {}),
},
});
toolCallIndex += 1;
}
if (part.functionResponse && role === 'user') {
// Create tool message for the function response (with embedded media)
const toolMessage = this.createToolMessage(part.functionResponse);
if (toolMessage) {
messages.push(toolMessage);
}
}
return;
}
// Handle model messages with function calls
if (content.role === 'model' && parsedParts.functionCalls.length > 0) {
const toolCalls = parsedParts.functionCalls.map((fc, index) => ({
id: fc.id || `call_${index}`,
type: 'function' as const,
function: {
name: fc.name || '',
arguments: JSON.stringify(fc.args || {}),
},
}));
if (role === 'assistant') {
if (
contentParts.length === 0 &&
toolCalls.length === 0 &&
reasoningParts.length === 0
) {
return;
}
const assistantTextContent = contentParts
.filter(
(part): part is OpenAI.Chat.ChatCompletionContentPartText =>
part.type === 'text',
)
.map((part) => part.text)
.join('');
const assistantMessage: ExtendedChatCompletionAssistantMessageParam = {
role: 'assistant' as const,
content: parsedParts.contentParts.join('') || null,
tool_calls: toolCalls,
role: 'assistant',
content: assistantTextContent || null,
};
// Only include reasoning_content if it has actual content
const reasoningContent = parsedParts.thoughtParts.join('');
if (toolCalls.length > 0) {
assistantMessage.tool_calls = toolCalls;
}
const reasoningContent = reasoningParts.join('');
if (reasoningContent) {
assistantMessage.reasoning_content = reasoningContent;
}
@@ -432,79 +491,15 @@ export class OpenAIContentConverter {
return;
}
// Handle regular messages with multimodal content
const role = content.role === 'model' ? 'assistant' : 'user';
const openAIMessage = this.createMultimodalMessage(role, parsedParts);
if (openAIMessage) {
messages.push(openAIMessage);
if (contentParts.length > 0) {
messages.push({
role: 'user',
content:
contentParts as unknown as OpenAI.Chat.ChatCompletionContentPart[],
});
}
}
/**
* Parse Gemini parts into categorized components
*/
private parseParts(parts: Part[]): ParsedParts {
const thoughtParts: string[] = [];
const contentParts: string[] = [];
const functionCalls: FunctionCall[] = [];
const functionResponses: FunctionResponse[] = [];
const mediaParts: Array<{
type: 'image' | 'audio' | 'file';
data: string;
mimeType: string;
fileUri?: string;
}> = [];
for (const part of parts) {
if (typeof part === 'string') {
contentParts.push(part);
} else if (
'text' in part &&
part.text &&
!('thought' in part && part.thought)
) {
contentParts.push(part.text);
} else if (
'text' in part &&
part.text &&
'thought' in part &&
part.thought
) {
thoughtParts.push(part.text);
} else if ('functionCall' in part && part.functionCall) {
functionCalls.push(part.functionCall);
} else if ('functionResponse' in part && part.functionResponse) {
functionResponses.push(part.functionResponse);
} else if ('inlineData' in part && part.inlineData) {
const { data, mimeType } = part.inlineData;
if (data && mimeType) {
const mediaType = this.getMediaType(mimeType);
mediaParts.push({ type: mediaType, data, mimeType });
}
} else if ('fileData' in part && part.fileData) {
const { fileUri, mimeType } = part.fileData;
if (fileUri && mimeType) {
const mediaType = this.getMediaType(mimeType);
mediaParts.push({
type: mediaType,
data: '',
mimeType,
fileUri,
});
}
}
}
return {
thoughtParts,
contentParts,
functionCalls,
functionResponses,
mediaParts,
};
}
private extractFunctionResponseContent(response: unknown): string {
if (response === null || response === undefined) {
return '';
@@ -535,6 +530,96 @@ export class OpenAIContentConverter {
}
}
/**
* Create a tool message from function response (with embedded media parts)
*/
private createToolMessage(
response: FunctionResponse,
): OpenAI.Chat.ChatCompletionToolMessageParam | null {
const textContent = this.extractFunctionResponseContent(response.response);
const contentParts: OpenAIContentPart[] = [];
// Add text content first if present
if (textContent) {
contentParts.push({ type: 'text' as const, text: textContent });
}
// Add media parts from function response
for (const part of response.parts || []) {
const mediaPart = this.createMediaContentPart(part);
if (mediaPart) {
contentParts.push(mediaPart);
}
}
// Tool messages require content, so skip if empty
if (contentParts.length === 0) {
return null;
}
// Cast to OpenAI type - some OpenAI-compatible APIs support richer content in tool messages
return {
role: 'tool' as const,
tool_call_id: response.id || '',
content: contentParts as unknown as
| string
| OpenAI.Chat.ChatCompletionContentPartText[],
};
}
/**
* Create OpenAI media content part from Gemini part
*/
private createMediaContentPart(part: Part): OpenAIContentPart | null {
if (part.inlineData?.mimeType && part.inlineData?.data) {
const mediaType = this.getMediaType(part.inlineData.mimeType);
if (mediaType === 'image') {
const dataUrl = `data:${part.inlineData.mimeType};base64,${part.inlineData.data}`;
return {
type: 'image_url' as const,
image_url: { url: dataUrl },
};
}
if (mediaType === 'audio') {
const format = this.getAudioFormat(part.inlineData.mimeType);
if (format) {
return {
type: 'input_audio' as const,
input_audio: {
data: part.inlineData.data,
format,
},
};
}
}
}
if (part.fileData?.mimeType && part.fileData?.fileUri) {
const filename = part.fileData.displayName || 'file';
const fileUri = part.fileData.fileUri;
if (fileUri.startsWith('data:')) {
return {
type: 'file' as const,
file: {
filename,
file_data: fileUri,
},
};
}
return {
type: 'file' as const,
file: {
filename,
file_data: `data:${part.fileData.mimeType};base64,${fileUri}`,
},
};
}
return null;
}
/**
* Determine media type from MIME type
*/
@@ -544,85 +629,6 @@ export class OpenAIContentConverter {
return 'file';
}
/**
* Create multimodal OpenAI message from parsed parts
*/
private createMultimodalMessage(
role: 'user' | 'assistant',
parsedParts: Pick<
ParsedParts,
'contentParts' | 'mediaParts' | 'thoughtParts'
>,
): ExtendedChatCompletionMessageParam | null {
const { contentParts, mediaParts, thoughtParts } = parsedParts;
const reasoningContent = thoughtParts.join('');
const content = contentParts.map((text) => ({
type: 'text' as const,
text,
}));
// If no media parts, return simple text message
if (mediaParts.length === 0) {
if (content.length === 0) return null;
const message: ExtendedChatCompletionMessageParam = { role, content };
// Only include reasoning_content if it has actual content
if (reasoningContent) {
(
message as ExtendedChatCompletionAssistantMessageParam
).reasoning_content = reasoningContent;
}
return message;
}
// For assistant messages with media, convert to text only
// since OpenAI assistant messages don't support media content arrays
if (role === 'assistant') {
return content.length > 0
? { role: 'assistant' as const, content }
: null;
}
const contentArray: OpenAI.Chat.ChatCompletionContentPart[] = [...content];
// Add media content
for (const mediaPart of mediaParts) {
if (mediaPart.type === 'image') {
if (mediaPart.fileUri) {
// For file URIs, use the URI directly
contentArray.push({
type: 'image_url' as const,
image_url: { url: mediaPart.fileUri },
});
} else if (mediaPart.data) {
// For inline data, create data URL
const dataUrl = `data:${mediaPart.mimeType};base64,${mediaPart.data}`;
contentArray.push({
type: 'image_url' as const,
image_url: { url: dataUrl },
});
}
} else if (mediaPart.type === 'audio' && mediaPart.data) {
// Convert audio format from MIME type
const format = this.getAudioFormat(mediaPart.mimeType);
if (format) {
contentArray.push({
type: 'input_audio' as const,
input_audio: {
data: mediaPart.data,
format: format as 'wav' | 'mp3',
},
});
}
}
// Note: File type is not directly supported in OpenAI's current API
// Could be extended in the future or handled as text description
}
return contentArray.length > 0
? { role: 'user' as const, content: contentArray }
: null;
}
/**
* Convert MIME type to OpenAI audio format
*/
@@ -693,8 +699,9 @@ export class OpenAIContentConverter {
const parts: Part[] = [];
// Handle reasoning content (thoughts)
const reasoningText = (choice.message as ExtendedCompletionMessage)
.reasoning_content;
const reasoningText =
(choice.message as ExtendedCompletionMessage).reasoning_content ??
(choice.message as ExtendedCompletionMessage).reasoning;
if (reasoningText) {
parts.push({ text: reasoningText, thought: true });
}
@@ -798,8 +805,9 @@ export class OpenAIContentConverter {
if (choice) {
const parts: Part[] = [];
const reasoningText = (choice.delta as ExtendedCompletionChunkDelta)
?.reasoning_content;
const reasoningText =
(choice.delta as ExtendedCompletionChunkDelta)?.reasoning_content ??
(choice.delta as ExtendedCompletionChunkDelta)?.reasoning;
if (reasoningText) {
parts.push({ text: reasoningText, thought: true });
}
@@ -1130,6 +1138,10 @@ export class OpenAIContentConverter {
// If the last message is also an assistant message, merge them
if (lastMessage.role === 'assistant') {
const lastToolCalls =
'tool_calls' in lastMessage ? lastMessage.tool_calls || [] : [];
const currentToolCalls =
'tool_calls' in message ? message.tool_calls || [] : [];
// Combine content
const lastContent = lastMessage.content;
const currentContent = message.content;
@@ -1171,10 +1183,6 @@ export class OpenAIContentConverter {
}
// Combine tool calls
const lastToolCalls =
'tool_calls' in lastMessage ? lastMessage.tool_calls || [] : [];
const currentToolCalls =
'tool_calls' in message ? message.tool_calls || [] : [];
const combinedToolCalls = [...lastToolCalls, ...currentToolCalls];
// Update the last message with combined data

View File

@@ -320,13 +320,15 @@ export class ContentGenerationPipeline {
'frequency_penalty',
'frequencyPenalty',
),
...this.buildReasoningConfig(),
...this.buildReasoningConfig(request),
};
return params;
}
private buildReasoningConfig(): Record<string, unknown> {
private buildReasoningConfig(
request: GenerateContentParameters,
): Record<string, unknown> {
// Reasoning configuration for OpenAI-compatible endpoints is highly fragmented.
// For example, across common providers and models:
//
@@ -336,13 +338,21 @@ export class ContentGenerationPipeline {
// - gpt-5.x series — thinking is enabled by default; can be disabled via `reasoning.effort`
// - qwen3 series — model-dependent; can be manually disabled via `extra_body.enable_thinking`
//
// Given this inconsistency, we choose not to set any reasoning config here and
// instead rely on each models default behavior.
// Given this inconsistency, we avoid mapping values and only pass through the
// configured reasoning object when explicitly enabled. This keeps provider- and
// model-specific semantics intact while honoring request-level opt-out.
// We plan to introduce provider- and model-specific settings to enable more
// fine-grained control over reasoning configuration.
if (request.config?.thinkingConfig?.includeThoughts === false) {
return {};
}
return {};
const reasoning = this.contentGeneratorConfig.reasoning;
if (reasoning === false || reasoning === undefined) {
return {};
}
return { reasoning };
}
/**

View File

@@ -608,7 +608,7 @@ describe('DashScopeOpenAICompatibleProvider', () => {
});
});
it('should add empty text item with cache control if last item is not text for streaming requests', () => {
it('should add cache control to last item even if not text for streaming requests', () => {
const requestWithNonTextLast: OpenAI.Chat.ChatCompletionCreateParams = {
model: 'qwen-max',
stream: true, // This will trigger cache control on last message
@@ -633,12 +633,12 @@ describe('DashScopeOpenAICompatibleProvider', () => {
const content = result.messages[0]
.content as OpenAI.Chat.ChatCompletionContentPart[];
expect(content).toHaveLength(3);
expect(content).toHaveLength(2);
// Should add empty text item with cache control
expect(content[2]).toEqual({
type: 'text',
text: '',
// Cache control should be added to the last item (image)
expect(content[1]).toEqual({
type: 'image_url',
image_url: { url: 'https://example.com/image.jpg' },
cache_control: { type: 'ephemeral' },
});
});
@@ -709,13 +709,8 @@ describe('DashScopeOpenAICompatibleProvider', () => {
const content = result.messages[0]
.content as OpenAI.Chat.ChatCompletionContentPart[];
expect(content).toEqual([
{
type: 'text',
text: '',
cache_control: { type: 'ephemeral' },
},
]);
// Empty content array should remain empty
expect(content).toEqual([]);
});
});

View File

@@ -257,31 +257,15 @@ export class DashScopeOpenAICompatibleProvider
contentArray: ChatCompletionContentPartWithCache[],
): ChatCompletionContentPartWithCache[] {
if (contentArray.length === 0) {
return [
{
type: 'text',
text: '',
cache_control: { type: 'ephemeral' },
} as ChatCompletionContentPartTextWithCache,
];
return contentArray;
}
// Add cache_control to the last text item
const lastItem = contentArray[contentArray.length - 1];
if (lastItem.type === 'text') {
// Add cache_control to the last text item
contentArray[contentArray.length - 1] = {
...lastItem,
cache_control: { type: 'ephemeral' },
} as ChatCompletionContentPartTextWithCache;
} else {
// If the last item is not text, add a new text item with cache_control
contentArray.push({
type: 'text',
text: '',
cache_control: { type: 'ephemeral' },
} as ChatCompletionContentPartTextWithCache);
}
contentArray[contentArray.length - 1] = {
...lastItem,
cache_control: { type: 'ephemeral' },
} as ChatCompletionContentPartTextWithCache;
return contentArray;
}

View File

@@ -102,16 +102,14 @@ export const QWEN_OAUTH_ALLOWED_MODELS = [
export const QWEN_OAUTH_MODELS: ModelConfig[] = [
{
id: 'coder-model',
name: 'Qwen Coder',
description:
'The latest Qwen Coder model from Alibaba Cloud ModelStudio (version: qwen3-coder-plus-2025-09-23)',
name: 'coder-model',
description: 'The latest Qwen Coder model from Alibaba Cloud ModelStudio',
capabilities: { vision: false },
},
{
id: 'vision-model',
name: 'Qwen Vision',
description:
'The latest Qwen Vision model from Alibaba Cloud ModelStudio (version: qwen3-vl-plus-2025-09-23)',
name: 'vision-model',
description: 'The latest Qwen Vision model from Alibaba Cloud ModelStudio',
capabilities: { vision: true },
},
];

View File

@@ -283,6 +283,7 @@ describe('ReadFileTool', () => {
inlineData: {
data: pngHeader.toString('base64'),
mimeType: 'image/png',
displayName: 'image.png',
},
});
expect(result.returnDisplay).toBe('Read image file: image.png');
@@ -301,9 +302,10 @@ describe('ReadFileTool', () => {
const result = await invocation.execute(abortSignal);
expect(result.llmContent).toEqual({
inlineData: {
data: pdfHeader.toString('base64'),
fileData: {
fileUri: pdfHeader.toString('base64'),
mimeType: 'application/pdf',
displayName: 'document.pdf',
},
});
expect(result.returnDisplay).toBe('Read pdf file: document.pdf');

View File

@@ -383,6 +383,7 @@ describe('ReadManyFilesTool', () => {
0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a,
]).toString('base64'),
mimeType: 'image/png',
displayName: 'image.png',
},
},
'\n--- End of content ---',
@@ -407,6 +408,7 @@ describe('ReadManyFilesTool', () => {
0x89, 0x50, 0x4e, 0x47, 0x0d, 0x0a, 0x1a, 0x0a,
]).toString('base64'),
mimeType: 'image/png',
displayName: 'myExactImage.png',
},
},
'\n--- End of content ---',
@@ -434,32 +436,34 @@ describe('ReadManyFilesTool', () => {
);
});
it('should include PDF files as inlineData parts if explicitly requested by extension', async () => {
it('should include PDF files as fileData parts if explicitly requested by extension', async () => {
createBinaryFile('important.pdf', Buffer.from('%PDF-1.4...'));
const params = { paths: ['*.pdf'] }; // Explicitly requesting .pdf files
const invocation = tool.build(params);
const result = await invocation.execute(new AbortController().signal);
expect(result.llmContent).toEqual([
{
inlineData: {
data: Buffer.from('%PDF-1.4...').toString('base64'),
fileData: {
fileUri: Buffer.from('%PDF-1.4...').toString('base64'),
mimeType: 'application/pdf',
displayName: 'important.pdf',
},
},
'\n--- End of content ---',
]);
});
it('should include PDF files as inlineData parts if explicitly requested by name', async () => {
it('should include PDF files as fileData parts if explicitly requested by name', async () => {
createBinaryFile('report-final.pdf', Buffer.from('%PDF-1.4...'));
const params = { paths: ['report-final.pdf'] };
const invocation = tool.build(params);
const result = await invocation.execute(new AbortController().signal);
expect(result.llmContent).toEqual([
{
inlineData: {
data: Buffer.from('%PDF-1.4...').toString('base64'),
fileData: {
fileUri: Buffer.from('%PDF-1.4...').toString('base64'),
mimeType: 'application/pdf',
displayName: 'report-final.pdf',
},
},
'\n--- End of content ---',

View File

@@ -731,6 +731,10 @@ describe('fileUtils', () => {
expect(
(result.llmContent as { inlineData: { data: string } }).inlineData.data,
).toBe(fakePngData.toString('base64'));
expect(
(result.llmContent as { inlineData: { displayName?: string } })
.inlineData.displayName,
).toBe('image.png');
expect(result.returnDisplay).toContain('Read image file: image.png');
});
@@ -743,15 +747,20 @@ describe('fileUtils', () => {
mockConfig,
);
expect(
(result.llmContent as { inlineData: unknown }).inlineData,
(result.llmContent as { fileData: unknown }).fileData,
).toBeDefined();
expect(
(result.llmContent as { inlineData: { mimeType: string } }).inlineData
(result.llmContent as { fileData: { mimeType: string } }).fileData
.mimeType,
).toBe('application/pdf');
expect(
(result.llmContent as { inlineData: { data: string } }).inlineData.data,
(result.llmContent as { fileData: { fileUri: string } }).fileData
.fileUri,
).toBe(fakePdfData.toString('base64'));
expect(
(result.llmContent as { fileData: { displayName?: string } }).fileData
.displayName,
).toBe('document.pdf');
expect(result.returnDisplay).toContain('Read pdf file: document.pdf');
});

View File

@@ -351,6 +351,7 @@ export async function processSingleFileContent(
.relative(rootDirectory, filePath)
.replace(/\\/g, '/');
const displayName = path.basename(filePath);
switch (fileType) {
case 'binary': {
return {
@@ -456,7 +457,6 @@ export async function processSingleFileContent(
};
}
case 'image':
case 'pdf':
case 'audio':
case 'video': {
const contentBuffer = await fs.promises.readFile(filePath);
@@ -466,6 +466,21 @@ export async function processSingleFileContent(
inlineData: {
data: base64Data,
mimeType: mime.getType(filePath) || 'application/octet-stream',
displayName,
},
},
returnDisplay: `Read ${fileType} file: ${relativePathForDisplay}`,
};
}
case 'pdf': {
const contentBuffer = await fs.promises.readFile(filePath);
const base64Data = contentBuffer.toString('base64');
return {
llmContent: {
fileData: {
fileUri: base64Data,
mimeType: mime.getType(filePath) || 'application/octet-stream',
displayName,
},
},
returnDisplay: `Read ${fileType} file: ${relativePathForDisplay}`,

View File

@@ -113,6 +113,7 @@ describe('readPathFromWorkspace', () => {
inlineData: {
mimeType: 'image/png',
data: imageData.toString('base64'),
displayName: 'image.png',
},
},
]);
@@ -263,6 +264,7 @@ describe('readPathFromWorkspace', () => {
inlineData: {
mimeType: 'image/png',
data: imageData.toString('base64'),
displayName: 'photo.png',
},
});
});